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Abstract

Chinese hamster ovary (CHO) cells are the leading platform for the production of biophar-

maceuticals with human-like glycosylation. The standard practice for cell line generation

relies on trial and error approaches such as adaptive evolution and high-throughput screen-

ing, which typically take several months. Metabolic modeling could aid in designing better

producer cell lines and thus shorten development times. The genome-scale metabolic

model (GSMM) of CHO can accurately predict growth rates. However, in order to predict

rational engineering strategies it also needs to accurately predict intracellular fluxes. In this

work we evaluated the agreement between the fluxes predicted by parsimonious flux bal-

ance analysis (pFBA) using the CHO GSMM and a wide range of 13C metabolic flux data

from literature. While glycolytic fluxes were predicted relatively well, the fluxes of tricarbox-

ylic acid (TCA) cycle were vastly underestimated due to too low energy demand. Inclusion

of computationally estimated maintenance energy significantly improved the overall accu-

racy of intracellular flux predictions. Maintenance energy was therefore determined experi-

mentally by running continuous cultures at different growth rates and evaluating their

respective energy consumption. The experimentally and computationally determined main-

tenance energy were in good agreement. Additionally, we compared alternative objective

functions (minimization of uptake rates of seven nonessential metabolites) to the biomass

objective. While the predictions of the uptake rates were quite inaccurate for most objec-

tives, the predictions of the intracellular fluxes were comparable to the biomass objective

function.

Author summary

There is an increasing demand for protein pharmaceuticals, especially monoclonal anti-

bodies. Chinese Hamster Ovary (CHO) are currently the leading production host due to
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Copyright: © 2021 Széliová et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All data and code are

available at Mendeley Data http://dx.doi.org/10.

17632/p973bk79ck.1.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/475361863?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://orcid.org/0000-0002-9885-9758
https://orcid.org/0000-0001-8828-6135
https://orcid.org/0000-0001-9175-872X
https://orcid.org/0000-0002-1934-2786
https://orcid.org/0000-0002-0020-9539
https://orcid.org/0000-0002-3048-9156
https://orcid.org/0000-0002-1964-2455
https://orcid.org/0000-0003-3374-8456
https://orcid.org/0000-0001-9494-3410
https://doi.org/10.1371/journal.pcbi.1009022
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1009022&domain=pdf&date_stamp=2021-06-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1009022&domain=pdf&date_stamp=2021-06-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1009022&domain=pdf&date_stamp=2021-06-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1009022&domain=pdf&date_stamp=2021-06-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1009022&domain=pdf&date_stamp=2021-06-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1009022&domain=pdf&date_stamp=2021-06-23
https://doi.org/10.1371/journal.pcbi.1009022
https://doi.org/10.1371/journal.pcbi.1009022
https://doi.org/10.1371/journal.pcbi.1009022
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.17632/p973bk79ck.1
http://dx.doi.org/10.17632/p973bk79ck.1


their ability to perform human-like post-translational modifications. However, it typically

takes several months of trial-and-error approaches to develop a high-producer cell line.

Metabolic modelling has the potential to make cell line and process development faster

and cheaper by predicting targeted modifications to the cell line genome, cultivation

medium or bioprocess. In fact, genome-scale metabolic reconstructions of CHO are

already available, and ready for use in cell line development. However, in order to success-

fully use these models, we need to make sure that they are able to accurately predict meta-

bolic phenotypes. Here we use genome-scale metabolic models of CHO to evaluate the

models’ ability to correctly predict intracellular flux distributions. We find that a crucial

key ingredient for the correct estimation of central carbon fluxes is the non-growth associ-

ated maintenance energy (mATP). We estimated mATP computationally and confirmed

it experimentally. Adding this single constraint leads to significantly better predictions of

intracellular fluxes, especially in glycolysis and the tricarboxylic acid cycle.

Introduction

Chinese hamster ovary (CHO) cells are currently the leading production host for the synthesis

of complex biopharmaceuticals with human-like post-translational modifications [1]. Products

made in CHO belong to the top-selling drugs on the market (e.g. Humira) [2]. The increasing

demand for CHO-derived products requires advances in cell line and process development.

Until now, significant improvements in productivity, product yield and growth rate of the cells

have been achieved by media optimization and high-throughput screening for good producers

[3, 4]. However, the development of high producer cell lines is laborious, expensive and takes

several months for each new product [5]. Systems biology approaches such as metabolic

modeling might push the productivity even further, shorten the development times for new

products and improve the product quality by elucidating potential bottlenecks in metabolism

and suggesting genetic engineering or feed/media optimization strategies [6, 7].

In 2016, a community-derived, consensus genome-scale metabolic model (GSMM) of

CHO was published [8] and several updates have been made since [9–11]. These serve as a

basis for applying genome-scale metabolic modeling to CHO. Simulations based on this model

suggested huge potential for improved protein productivities [8]. Indeed, productivity was

recently increased by implementing targeted knock-outs of several secreted host cell proteins.

These results were consistent with the predictions of the CHO GSMM coupled with the secre-

tory pathway model [11], which showed that these knock-outs would free up cellular resources

[12].

To successfully use modeling for the rational design of new engineering strategies, accurate

predictions of cellular phenotypes are essential. Previously we showed that a GSMM can accu-

rately predict growth rates if supplied with accurate exchange rates of (essential) amino acids

(AAs) and correctly determined biomass composition [13–15]. However, the model also needs

to accurately predict intracellular fluxes. Previously it was shown that biomass composition

[16] as well as extracellular exchange rates [17] have a big impact on the predicted intracellular

fluxes. However, the validation of the flux predictions by the CHO GSMM with experimental

data has been done only in one study so far [9].

In this work, we compare fluxes predicted by parsimonious flux balance analysis (pFBA),

using the GSMM of CHO [8], against 20 13C metabolic flux data sets across producer and non-

producer cell lines in different media and culture modes (batch, fed-batch, semi-continuous)

extracted from six publications [18–23]. We find that many fluxes in central carbon
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metabolism can only be reliably estimated if non-growth associated cellular maintenance is

considered which was so far not included in the GSMM.

Materials and methods

pFBA simulations

PFBA [24] was performed with the package COBRApy [25] using the solver Gurobi 9.1.0 [26]

in python 3.7.9. The GSMM of CHO iCHO1766 [8] was used. Maximization of biomass pro-

duction was used as the objective function using two biomass reactions available in the

GSMM, R_biomass_cho and R_biomass_cho_producing. The main difference

between these two reactions is that R_biomass_cho has lower protein content (56% com-

pared to 70% in R_biomass_cho_producing), but higher lipid, DNA and RNA content.

Uptake and secretion rates of extracellular metabolites and the recombinant product from 20

datasets (six publications) were used as constraints [18–23] (see S1 Table for an overview). In

several cases, the uptake rates of tryptophan were not available. Assuming that it is the least

abundant AA in the biomass [27], tryptophan uptake was constrained to the same value as the

AA with the lowest uptake. All data were converted to mmol g−1 h −1 using dry cell masses pro-

vided in the publications. If not available, the average mass of CHO (264 pg) was used [13]. In

some cases, the experimental data for the exchange rates was not provided, so the fitted values

from 13C metabolic flux analysis (MFA) were used. If the data was provided only as plots, it

was extracted using WebPlotDigitizer (https://apps.automeris.io/wpd/). Oxygen uptake was

left unconstrained.

Mapping of 13C models to iCHO1766

In order to compare predictions made by the GSMM of CHO to the results of 13C MFA, it was

necessary to map the metabolites and reactions from all models used for 13C MFA (referred to

as “13C model” in the further text) to the GSMM of CHO iCHO1766 [8]. Metabolic flux data

was extracted from six publications [18–23], see S1 Table for an overview.

For most models, it was impossible to make a one to one mapping. Thus, the following

rules were applied.

• If one reaction in a 13C model could be mapped to several reactions in iCHO1766, the fluxes

from these reactions were summed up or subtracted, depending on the direction.

• In case of multiple equivalent reactions occurring in several compartments, their individual

contributions predicted by PFBA were summed up and only the total was used for compari-

son. This approach disregards cellular compartments.

• In the 13C models, several reactions are often lumped into one; therefore, the net flux of the

corresponding reactions in the GSMM was calculated and compared to the flux of the

lumped reaction.

• In case of producer cell lines, reactions for the synthesis of the recombinant protein were

added comprising the AA composition provided in the publications and the energy demand

for the polymerisation from [28] (2 GTP and 1.306 ATP per 1 mole of AAs are hydrolysed to

2 GDP, 1 AMP and 0.306 ADP).

Computational estimation of the maintenance energy

To estimate maintenance energy (mATP), PFBA was run for every individual dataset, where

growth rate was maximized and mATP hydrolysis (reaction R_DM_atp_) was constrained to

PLOS COMPUTATIONAL BIOLOGY Maintenance energy improves CHO flux predictions

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009022 June 11, 2021 3 / 20

https://apps.automeris.io/wpd/
https://doi.org/10.1371/journal.pcbi.1009022


a range of different values of mATP (0 -40 mmol g−1 h−1 or until the simulation was no longer

feasible). For each value of mATP, the agreement between experimental and predicted fluxes

was evaluated and the value that lead to the lowest median relative error was chosen as optimal.

Reactions with the experimental fluxes less than 1% of the maximum flux (jvie=max vej < 0:01)

were omitted from this analysis, because their absolute fluxes were very small (often close to

zero) and consequently the relative errors were very high (even though the absolute differences

in fluxes were very small). This often distorted the analysis and no clear minimum was

observed. Additionally, the analysis was performed with all datasets at the same time—the

mATP value was varied and the overall agreement between the predicted and the experimental

fluxes for all datasets was evaluated. The calculated median errors were divided by the number

of datasets for which a feasible solution was obtained (because the higher the mATP value, the

lower the amount of datasets with a feasible pFBA solution).

Uptake objective function

PFBA simulations were done as in [29]. First, growth rate and productivity were fixed to the

experimental values and the uptake of each essential AA was minimized one by one to get an

estimate for the minimum uptake rate that sustains the experimental growth rate (nine AAs

are essential in the iCHO1766 model). If the measured experimental uptake rate was lower

than the minimum required uptake by the model, we fixed it to the computed uptake. Other-

wise the experimental uptake rate was used. In a few cases, the uptake rates of tyrosine and cys-

teine had to be adjusted in the same way as the essential AAs, because the experimental uptake

rates were insufficient to sustain growth and no solution was obtained (three datasets for tyro-

sine and three for cysteine).

In the next step, we constrained the nonessential uptake rates, secretion rates, growth rate

and productivity to the experimental values (except for the nonessential uptake rate that was

set as the objective, which was left unconstrained) and the essential uptake rates to the pre-

dicted or experimental values (see above). The flux distributions were obtained by performing

pFBA with minimization of an uptake rate (glucose, glutamine, serine, tyrosine, arginine,

aspartate or asparagine) as the objective.

Statistical analysis

Statistical analysis was carried out in R version 4.0.2. Linear correlations between experimental

and predicted data were calculated with R function lm. In case of intracellular flux predictions,

the inverses of the experimental confidence intervals were used as weights for the linear fitting.

The relative error of the fluxes was calculated with Eq (1),

jvip � viej
jviej

ð1Þ

where vip are the fluxes predicted by pFBA and vie are the experimentally determined fluxes.

Mean and median relative errors were calculated.

To check whether the addition of mATP constraint has a significant effect on the fits,

mATP was added as a categorical predictor (value 0 or 1) and an interaction term was included

in the model (experimental fluxes�mATP). If the term is significant (p-value < 0.05), we con-

clude that mATP has a significant effect on the slope. We also compared the models without

or with mATP predictor with χ2 analysis.
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CHO cell cultivation

Suspension CHO-K1 cells (ECACC CCL-61) were grown in CD-CHO medium (Gibco,

Thermo Fisher Scientific, MA, USA) supplemented with 0.2% (v/v) Anti-Clumping Agent

(Gibco, Thermo Fisher Scientific, MA, USA) and 8 mM L-Glutamine (Sigma-Aldrich, MO,

USA). Cells were cultivated in 125 mL non-baffled Erlenmeyer flasks at 37˚C at 140 rpm with

25 mm throw, 7% CO2 and 85% humidity and passaged every 2–4 days. Mycoplasma contami-

nation was regularly checked with MycoAlert Mycoplasma Detection Kit (Lonza, Basel, Swit-

zerland). The cell concentration and viability were determined with Vi-CELL XR (Beckman

Coulter, CA, USA) calibrated with ViaCheck Concentration Control (Bangs Laboratories,

Inc., IN, USA).

Continuous cultivation

Cells were cultivated in DASGIP Parallel Bioreactor System (Eppendorf, Hamburg, Ger-

many) in DS0700ODSS vessels at 37˚C and agitated with a marine impeller at 80 rpm. pH

was monitored with EasyFerm Plus PHI K8 225 pH Electrode (Hamilton, NV, USA) and

maintained at 7 ± 0.05 with CO2 and 7.5% (w/w) NaHCO3. pH was also checked with an

external pH probe (Mettler Toledo) at least twice per week to correct potential pH drifts. Dis-

solved oxygen was measured with DO sensor VisiFerm (Hamilton, NV, USA) and main-

tained at 30% with a cascade (1. increase O2 concentration in the incoming gas up to 50%, 2.

increase both flow rate and O2 concentration up to 75%, 3. increase flow rate up to 0.1 vol-

ume per volume per minute [vvm]). Cells were inoculated at a seeding density of 1.6 × 105

viable cells/mL at a working volume of 300 mL. At the end of the exponential phase, the cul-

ture was switched to the continuous mode and maintained at a constant volume of 270 mL.

The flow-in pump was set to a constant rate and the amount of medium pumped into the

bioreactors was monitored using Mettler Toledo balances MS6002TS (readability 0.01 g) to

calculate an accurate flow rate into the bioreactors. The tube for flow-out was positioned at

the height corresponding to 270 mL and the flow rate was set to a higher value than flow-in

to prevent overflow. The feed medium was kept at room temperature and protected from

light with aluminum foil. Due to the instability of glutamine, the medium was exchanged

every 5–7 days. During this time frame, the glutamine degradation was shown to be negligi-

ble (see S6 Fig).

After changing the dilution rate, the cultures were left to equilibrate for at least five volume

exchanges (except for one dilution rate (DR3, see Table 1) which was interrupted because of

contamination). To verify whether the cultures reached steady state, linear fits were performed

with viable cell density and Bioprofile data (glucose, lactate and ammonium concentrations)

using R function lm. If the 95% confidence interval of the slope contained zero, the parameter

was considered stable. For seven out of eleven dilution rates, all parameters were stable, includ-

ing a dilution rate where only 2.5 volume exchanges were reached due to contamination

(DR3). For three dilution rates 3
4= parameters were stable, but the concentration changes of

the unstable parameters were within the measurement error of the measurement device. Over-

all, all dilution rates were deemed stable enough and were used for further analysis (see Table 1

for an overview).

Extracellular metabolites

The samples for supernatant analysis were taken at least at two time points per steady state.

To separate cells from the medium, the cultures were centrifuged for 8 min at 200 g at room

temperature and supernatants were stored at −80˚C until further analysis or processed
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immediately. Lactate, ammonium and glucose concentrations were measured at Bioprofile

100Plus (NOVA Biomedical, MA, USA). Lactate and ammonium measurements were cor-

rected with 4-point calibration curves made in CD-CHO medium. As glucose was already con-

tained in the CD-CHO medium, a calibration curve was not done. Instead, the average

measured concentration of the standards was used for the calculation of the uptake rates in

Eq (4).

For two dilution rates (DR1 and DR2), the AA concentrations were quantified by Biocrates

with a commercial AbsoluteIDQ p180 kit. Briefly, AAs were derivatized with phenyl isothiocy-

anate in the presence of internal standards. The quantification was performed by liquid chro-

matography-mass spectrometry (LC-MS/MS) using a 4000 QTRAP (AB Sciex, Darmstadt,

Germany) and a Xevo TQ-S micro (Waters, Vienna, Austria) instrument with an electrospray

ionization source.

For the remaining dilution rates, AAs were analyzed using a high-performance liquid

chromatography method. Briefly, samples were diluted, internal standards 3-(2-thienyl)-

DL-alanine (Fluka) and sarcosine (Sigma) were added and subsequently filtered using a

0.2 μm filter unit (Sartorius). In an automated pre-column derivatization method, free pri-

mary AAs reacted with ortho-phthalaldehyde (OPA, Agilent) and proline and hydroxypro-

line with 9-fluorenyl-methyl chloroformate (FMOC, Fluka) and were then separated on a

ZORBAX Eclipse Plus C18 column (Agilent) at 40˚C using a flow rate of 0.64 mL/min. After

gradient elution with 10 mM K2HPO4:10mM K2B4O7 (Merck) pH 8.2 as solvent A and ace-

tonitrile:methanol:water (45:45:10, v:v:v) (Merck) as solvent B, AAs were excited at 230 nm

and the fluorescence signal was detected at 450 nm for OPA derivates and 266 nm and 305

nm for FMOC derivates, respectively. Samples were quantified using an internal standard

calibration.

The metabolite concentrations in the medium measured by both methods were compared

to the patent for CD-CHO medium (Gibco, Thermo Fisher Scientific, MA, USA) to make sure

the results are in the expected range and comparable between the two methods.

Table 1. The dilution rates, calculated growth rates (Eq (3)), steady state concentrations of cells, metabolite exchange rates (Eq (4)) and carbon recovery.

ID Dilution rate [h-1] Growth rate [h-1] Viable cells mL-1 10-6 Glucose [mmol g-1h-1] Lactate [mmol g-1h-1] Ammonium [mmol g-1h-1] Carbon recovery

DR1 0.020 0.021 5.43 -0.42� 0.56 0.08 1.00

DR2 0.026 0.027 5.42 -0.44 0.53 0.09� 1.02

DR3 0.016 0.016 6.02 -0.32 0.31 0.06 0.71

DR4 0.027 0.028 6.06 -0.43 0.58 0.09 1.02

DR5 0.032 0.032 6.31 -0.48 0.57 0.11 1.02

DR6 0.033 0.033 5.83 -0.46 0.61 0.12 1.10

DR7 0.032 0.033 5.32 -0.46 0.70 0.12 1.12

DR8 0.023 0.023 11.37 -0.29 0.26 0.04 0.89

DR9 0.035 0.036 6.14 -0.54�� 0.62�� 0.09�� 0.90

DR10 0.020 0.020 10.24 -0.28 0.27 0.04 0.89

DR11 0.024 0.024 9.77 -0.35� 0.34 0.04 0.85

A parameter was considered stable when the 95% confidence interval of the slope from the linear fit contained zero. Carbon recovery was calculated by summing up the

total carbon uptake and subtracting the total carbon that is secreted or goes into biomass (based on growth rate and biomass composition from [13]).

� The slope was statistically significant, but the change in concentration of glucose and ammonium was within the measurement error of the Bioprofile analyzer.

�� Confidence intervals could not be calculated because only two data points were available. The change in concentration was within the measurement error of the

Bioprofile analyzer.

https://doi.org/10.1371/journal.pcbi.1009022.t001
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Calculation of growth rate and exchange rates

For all calculations, the average of all data points in each steady state was used. Dilution rate D
was calculated with Eq (2),

D ¼ F=V ð2Þ

where F is the flow rate into the bioreactors (calculated from the change of mass of the fresh

culture medium over time) and V = 270mL is the volume of the medium in the bioreactors.

The growth rate μ at steady state was calculated with Eq (3),

m ¼ DNt=Nv ð3Þ

where Nv/Nt denotes fraction of viable cells. Steady state exchange rates qi of extracellular

metabolites were calculated with Eq (4),

qi ¼ ðCi
in � Ci

outÞD=Nv ð4Þ

where Ci
in and Ci

out are concentrations of metabolites in the incoming medium and in the bio-

reactor, respectively. To calculate standard deviation (SD) for an exchange rate, the SDs were

calculated for each variable from all available data points in steady state. Then, the SDs (σ) of

the rate was calculated according to the mathematical rules of manipulation with standard

deviations—Eq (5) if values were multiplied or divided (e.g. C = AB),

sC ¼
1

C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sA

A

� �2

þ
sB

B

� �2
r

ð5Þ

and Eq (6) if they were summed or subtracted (e.g C = A+B)

sC ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
A þ s

2
B

p
ð6Þ

Determination of maintenance energy

The GSMM with cell line specific biomass composition from [13] was used (iCHO_K1par-

8mMCD, BioModels ID: MODEL1907260016). The experimentally determined growth rate

and the exchange rates of glucose, lactate, ammonium and AAs were used as constraints for

flux balance analysis (FBA). The lower and upper bounds of the exchange reactions and the

biomass reaction (R_biomass_specific) were fixed to the experimental values ± SD.

Due to high experimental noise, the uptake rates of some essential AAs were too low to sustain

the experimental growth rate. Therefore the minimal uptake requirements were estimated as

in [29] and, if necessary, the constraints were adjusted. This had no impact on the calculations

of the ATP consumption as these AAs are solely used for biomass generation and not for ATP

generation. In three cases, the lower bounds of secretion rates were relaxed (DR1—alanine

secretion by 25%, DR5 glycine secretion by 40%, DR6 aspartate by 25%), otherwise the solu-

tions would have been infeasible (the upper bounds were set to the experimental values).

After constraining the growth rate and extracellular exchange rates to the experimental val-

ues, pFBA was performed with maximization of ATP hydrolysis as the objective (reaction

R_DM_atp_) for each dilution rate. Total ATP production was calculated by summing up

fluxes of all reactions in the GSMM that produce nucleoside triphosphates (ATP, GTP, CTP,

UTP, TTP, ITP, dATP, dGTP, dCTP, dUTP, dTTP, dITP; these compounds can be intercon-

verted in the model) and plotted against growth rates. Linear fit was done in R (function lm).

The intercept represents the estimated non-growth associated energy consumption (mATP)

and 1/slope is biomass yield per mole of ATP corrected for mATP (Ymax
ATP).
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Results

pFBA underestimates intracellular fluxes in iCHO1766

20 13C MFA datasets from producer and non-producer CHO cell lines across different media

were collected from literature [18–23], see S1 Table. Flux data were mapped onto the genome-

scale metabolic model iCHO1766 [8] and compared to pFBA predictions based on biomass

maximization (see Methods).

For 6 out of the 20 datasets growth could be predicted with an error of less than ±25% (for

R_biomass_cho), see Fig 1A. In three datasets growth was vastly underestimated, and over-

estimated in the remaining eleven. In one extreme case growth was overestimated by 190%.

Overall the median relative error was close to 60%. pFBA performs even worse when com-

pared to measured intracellular fluxes, hitting an overall median relative error of 83.8% (Fig

1B). On average, fluxes in glycolysis and AA are predicted better than fluxes in pentose phos-

phate pathway (PPP), pyruvate metabolism, and tricarboxylic acid cycle (TCA). More specifi-

cally, fluxes in PPP and TCA were vastly underestimated (median error 86.9% and 94.5%, see

Table 2).

We checked whether flux predictions can be improved when experimental growth rates

were used as additional constraints. Yet, no improvement was observed for those datasets that

returned a feasible solution (median relative error 91.5% vs. 83.8% previously).

Fig 1. Experimental vs. predicted growth rates (A) and intracellular fluxes (B). Data is shown for biomass equation

R_biomass_cho as the objective function. RE—relative error. The legend in panel (A) indicates the publication and

the used CHO cell line (if the information was available). Empty symbols indicate non-producers.

https://doi.org/10.1371/journal.pcbi.1009022.g001

Table 2. R2 and median relative error (Median RE) of the experimental and predicted fluxes with (+mATP) or

without mATP (-mATP) as constraint. Data is shown for biomass equation R_biomass_cho.

Subsystem -mATP +mATP

R2 Median RE (%) R2 Median RE (%)

Glycolysis 0.65 48.4 0.93 3.6

PPP 0.19 86.9 0.05 103

TCA 0.2 94.5 0.88 11

Pyr. metabolism 0.61 85.9 0.69 58.7

AA metabolism 0.72 63.6 0.74 36.2

All 0.45 83.8 0.93 24.6

https://doi.org/10.1371/journal.pcbi.1009022.t002
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Maintenance energy improves predicted glycolytic and TCA fluxes

The gross underestimation of intracellular fluxes, especially in glycolysis and TCA (supple-

mentary S3 Fig), which are the major sources of ATP, points at an underestimation of the

actual energy demand. In fact, current CHO models typically lack non-growth associated

maintenance energy demands conventionally used in microbial models [30–32]. Thus, for

each dataset we determined a CHO-specific, non-growth associated mATP by fixing the flux

for the maintenance reaction (R_DM_atp_c_) such that the median relative error across all

fluxes was minimal. S2 Fig illustrates data for the cell line SV-M3 [22]. For this cell line we find

a maintenance demand of 5.75 mmol g−1 h−1. Across all cell lines, mATP averages at 5.9 and

6.4 mmol g−1 h−1 for R_biomass_cho and R_biomass_cho_producing, respectively

(Fig 2A, S2 Table). Again the non-producing cell line CHO-K1 [20] sticks out with a more

than three times larger maintenance energy demand compared to the average (across cell

lines) for R_biomass_cho_producing.

Additionally we estimated a mean maintenance energy by fitting mATP across all datasets.

Mean maintenance was very close to the average mATP determined for each individual dataset

(5.75 for both biomass equations vs. 5.9 and 6.4 mmol g−1 h−1 for R_biomass_cho and

R_biomass_cho_producing, respectively).

Adding the estimated mATP value as a constraint strongly decreases the prediction errors

in the intracellular fluxes for all but one dataset, see Fig 2B. More specifically, the overall

median relative error decreased from 83.8% to 24.6% (Fig 3B) and from 92.5% to 16.6% for

R_biomass_cho and R_biomass_cho_producing, respectively. Conversely, R2 more

than doubled from 0.45 and 0.41 to 0.93 and 0.95. The addition of mATP had a significant

effect on the fit (p-value < 2.2−16), leading to a significant change of the slope from 0.36 to 0.98

for R_biomass_cho and from 0.27 to 1 for R_biomass_cho_producing (a value of 1

represents a perfect agreement between experimental and predicted fluxes).

Not only intracellular fluxes, but also growth rates were better predicted (Fig 3A). Now ten

rather than previously only six out of 20 growth rates could be predicted with an error of less

than ±25%. Five were even predicted within an error band of ±10%.

Fig 2. Estimated mATP values and their effect on flux prediction accuracy. (A) Computationally estimated mATP

values for different datasets with two biomass equations. (B) R2 values from linear fits of experimental and predicted

intracellular fluxes without (-mATP) or with mATP (+mATP) as constraint. The legend indicates the publication and

the used CHO cell line (if the information was available). Empty symbols indicate non-producers.

https://doi.org/10.1371/journal.pcbi.1009022.g002
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While the predictions largely improved for TCA and glycolysis fluxes, PPP became inactive

and the agreement with experimental data became worse (Table 2). However, the experimental

data for PPP often have very big uncertainty—e.g. for Templeton 2013 [21], Templeton 2017

[22] and McAtee Pereira 2018 [23], which make 15 out of 20 datasets, the confidence intervals

for the PPP reactions include zero.

Minimizing non-essential nutrient uptake performs similar to maximizing

growth

Recently, minimizing uptake of non-essential nutrients (rather than maximizing growth) was

suggested to be a more suitable modeling objective for CHO [29]. Thus, we repeated all previ-

ous simulations with uptake objective function (UOF), using the exchanges of glucose, gluta-

mine, serine, tyrosine, asparagine, aspartate and arginine as objectives. Maintenance energy

was estimated as before and similar mean mATP values were obtained (5.6–6.4 and 5.8–6.7 for

the biomass equations R_biomass_cho and R_biomass_cho_producing, respec-

tively, S2 Table).

The prediction accuracy of the intracellular fluxes after the addition of the mATP constraint

was comparable with biomass objective function (BOF) for all objective functions (see Fig 4B

for an example with glucose UOF and S5 Fig for the remaining objectives).

The predictions of the minimum uptake rates were best for glucose with R2 = 0.92 and a

median relative error of 4.1% (Fig 4A), followed by glutamine (R2 = 0.75, median error 50.4%)

and asparagine (R2 = 0.12, median error 24.2%). However, the uptake rates of the remaining

AAs were not predicted well (R2 = 0.06 or less; median errors within a range of 65.8–176%;

S4 Fig).

Experimental determination of maintenance energy

To verify our computational estimate, we determined the maintenance energy experimentally

in a CHO-K1 cell line. Continuous cultivation was run at eleven different dilution rates rang-

ing from 0.016 to 0.035 h−1 (Table 1). Cell viability was above 95% for all steady states. The

steady state viable cell densities were between 5.3 and 6.4 × 106 viable cells/mL for eight

Fig 3. Experimental vs. predicted growth rates (A) and intracellular fluxes (B) after the addition of mATP as

constraint. Results are shown for R_biomass_cho as the objective function. RE—relative error. The legend in panel

(A) indicates the publication and the used CHO cell line (if the information was available). Empty symbols indicate

non-producers.

https://doi.org/10.1371/journal.pcbi.1009022.g003
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dilution rates; for the remaining three they reached between 9.7–11.4 × 106 viable cells/mL (S7

Fig). For each dilution rate, extracellular exchange rates of glucose, AAs, lactate and ammo-

nium were determined. Uptake of glucose, and glutamine as well as secretion of lactate and

ammonium increased with increasing growth rate, see Fig 5. However, in case of waste prod-

uct secretion rates, the three dilution rates that had higher steady state cell concentrations

seem to separate from the remaining ones (indicated as magenta triangles in Fig 5).

Exchange rates of glucose, lactate, ammonium, all AA, and the growth rate were used as

constraints for pFBA and the hydrolysis of ATP was maximized. The total ATP production

was plotted against growth rate and a linear model was fitted (Fig 6). The intercept represents

the non-growth associated ATP consumption—the estimated mATP and its standard error

was determined to be 4.3 ± 1.7 mmol g−1 h−1, which compares well with the average mATP of

5.9/6.4 mmol g−1 h−1 determined computationally above.

Because energy is partially generated via oxidative phosphorylation, the amount of pro-

duced ATP depends on the P/O ratio. In iCHO1766, P/O ratio for NADH is 2.5, which is a

standard value [33]. To check how this value affects mATP estimation, we varied P/O ratio

between 2–3 and obtained mATP values between 3.5–5 mmol g−1 h−1 (S8 Fig).

From the slope of Fig 6 we also calculated Ymax
ATP (growth yield per mole of ATP corrected for

maintenance energy) and obtained value of 5.7 ± 2.1 g mol−1.

Discussion

An accurate determination of intracellular fluxes is key for understanding cellular metabolism

and applying methods that predict engineering strategies. Intracellular fluxes can be experi-

mentally determined with 13C metabolic flux analysis [34]. However, this method is very

expensive due to the usage of labelled substrates and prone to experimental variability because

of the need for rapid sampling and quenching of the metabolism. One of the cheaper and sim-

pler methods for flux determination is pFBA [24], which first maximizes the biomass produc-

tion (or other objective function) and subsequently minimizes the total sum of fluxes, based

on the assumption that cells try to minimize the utilization of resources. This method was

shown to be consistent with experimental data and it can be applied to GSMMs, which can

Fig 4. Experimental vs. predicted fluxes using minimization of glucose uptake rate as the objective function. (A)

Experimental vs. predicted minimal glucose uptake rate. (B) Experimental vs. predicted intracellular fluxes. Results are

shown for R_biomass_cho as the biomass reaction. RE—relative error. The legend in panel (A) indicates the

publication and the used CHO cell line (if the information was available). Empty symbols indicate non-producers.

https://doi.org/10.1371/journal.pcbi.1009022.g004
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provide a more complete picture about cell metabolism than the small models typically used

for 13C MFA.

In this work, we evaluated the agreement between experimentally measured intracellular

fluxes from 20 datasets [18–23] and pFBA predictions made with iCHO1766 genome-scale

model. We observed that the fluxes of central carbon metabolism, especially TCA cycle, were

underestimated in all datasets, which was explained by an insufficiently represented energy

demand in the model. Although the iCHO1766 model takes into account energy demands

for the synthesis of biomass and recombinant proteins, it currently lacks a value for non-

growth associated maintenance energy—the energy needed for processes such as turnover and

repair of macromolecules or maintenance of concentration gradients (e.g. Na+/K+ and Ca2+

ATPases) [35]. As no such value was available for CHO until now, we determined mATP com-

putationally and experimentally.

The variability of the computationally estimated mATP across cell lines and conditions was

quite high (relative SD 49% and 64% for R_biomass_cho and R_biomass_cho_pro-
ducing, respectively). This might be the result of the experimental errors of the metabolite

exchange rates. As seen in Fig 1A, the growth rate predictions had a high error, which we have

shown previously to be sensitive to errors in the exchange rates [13, 14]. Another factor is the

error of the 13C flux measurements which often had considerably big confidence intervals. The

differences might also stem from differences in the cell lines, cultivation conditions or produc-

tivities. However, it was not possible to differentiate between biological effects on mATP

Fig 5. The experimental exchange rates of glucose (A), lactate (B), glutamine (C) and ammonium (D) increase

with increasing growth rate. The shaded areas represent 95% confidence intervals. The triangle points in magenta

color are the dilution rates that had unusually high cell concentration in steady state (see S7 Fig).

https://doi.org/10.1371/journal.pcbi.1009022.g005
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estimation (e.g. cell lines, conditions) from the effects caused by the differences in labelling

and quantification (different labelled substrates, detection of intracellular vs. extracellular

labelled metabolites) and modelling approaches (e.g. steady state vs. non-stationary modelling,

presence of compartmentalisation). Nevertheless, the average mATP values were very similar

when estimated with different biomass equations (Fig 2A) and lead to a major improvement

in the predicted intracellular fluxes, especially in the TCA and glycolysis.

Fluxes of PPP got worse after the addition of a mATP constraint, which points at alternative

NADPH sources connected to the TCA, e.g. NADP+-dependent malic enzyme (NADP-ME)

or NADP+-dependent isocitrate dehydrogenase (NADP-ICDH). Indeed we found higher

activity of NADP-ME and NADP-ICDH in some datasets, but not consistently in all. This

points to a possible lack of actual NADPH demand in the model. Anabolic pathways that

require NADPH, such as synthesis of lipids or nucleotides [36] are present in the model.

Fig 6. Total energy production at different growth rates (as indicated in Table 1). The black line is a linear fit and the intercept represents energy

consumption at zero growth rate. The magenta triangles are dilution rates that had unusually high cell concentration in steady state (see S7 Fig). The shaded area

represents 95% confidence interval.

https://doi.org/10.1371/journal.pcbi.1009022.g006
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However, additional NADPH-consuming processes such as protein folding, degradation of

misfolded proteins [37] or maintenance of cellular redox balance [38] are not represented in

the model.

In our previous contribution [13] we observed that if glucose uptake and all amino acid

exchange rates are accurately measured, growth rate predictions are accurate too as these

rates essentially determine the energy metabolism even without considering mATP. Here we

encountered several data sets where the inclusion of mATP improved growth predictions.

However, since accuracy estimates on the exchange rates were sometimes missing in the origi-

nal publications, we are unable to exclude simple measurement inaccuracies as the reason for

this observation.

We also investigated the effect of alternative objective functions (nonessential uptake rates)

suggested by Chen et al. [29]. The estimated mATP values and the predictions of intracellular

fluxes were comparable to the predictions done with the “traditional” BOF for all tested objec-

tives. However, the predictions of the minimum uptake rates worked much better for glucose

uptake rate compared to the AA uptake rates. A possible explanation could be that the uptake

rates of glucose are higher than the amino acid uptake rates, so the relative error is smaller and

the predictions are less influenced by the noise in the input data.

The choice of the appropriate objective function might depend on the availability of experi-

mental data. In case of using BOF, highly accurate uptake and secretion rates are needed in

order to obtain accurate predictions, especially for essential AAs [13, 14]. If these are not avail-

able, using the UOF (glucose) might be a better choice than the use of BOF with imprecise AA

uptake rates as constraints.

The experimentally determined mATP for CHO-K1 was comparable to the average compu-

tational estimate but much lower than the estimated mATP for CHO-K1 from Nicolae et al.

[20] (Fig 2A). This discrepancy might have been caused by different experimental conditions,

uncertainty in the exchange rates or due to conversion of the reported exchange rates from

mmol Lcell
-1 h-1 to mmol g−1 h−1 with a literature value for cell dry mass [13]. As an example,

glucose uptake rate in Nicolae et al. was almost 1.7× higher than glucose uptake rate observed

at the highest dilution rate in our continuous fermentation and 1.6× higher than the rate

observed in batch cultivation of the same CHO-K1 cell line [13].

Furthermore, the uncertainty of the experimental estimate was quite high due to the techni-

cal difficulty of running continuous fermentation and the unstable nature of CHO cells. Long

cultivations lead to cell clumping, which complicated cell counting. It is also known that CHO

cells are unstable during long term cultivations [39, 40]. Furthermore, the physiological state

of a culture during steady state might differ depending on how it was reached and different

properties (e.g. cell and metabolite concentration) can be observed even if the same dilution

rate and cultivation conditions are used [41–48]. Such multiplicity of steady states is likely a

consequence of toxic waste product accumulation. Lower waste product secretion and higher

cell densities indicate a metabolic switch to an energetically more efficient metabolism (higher

activity of TCA and oxidative phosphorylation). This phenomenon could explain the different

cell densities and exchange rates observed for three dilution rates (DR8, DR10 and DR11; S7

Fig and Fig 5). During the transitions between the different steady states, cells could have

switched to a more oxidative metabolism with lower lactate secretion (or even consumption

during the periods of transition). However, not enough data was available to investigate this

phenomenon in more detail.

In literature there is only a small amount of data for mammalian maintenance energy and

no data for CHO. Mouse cells require a maintenance energy of 1.7 × 10−11 mmol cell-1 d-1

(65% of the total energy produced at the highest growth rate) [35], which corresponds to 1.1

mmol g−1 h−1 with a mouse cell dry mass (660 pg/cell) or 2.4–3.6 with a range of CHO dry
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masses [13]. However, the analysis in [35] was quite simplified. Even though they cultivated

the cells with a hydrolysate, they only considered glucose as the energy source and calculated

the generated ATP from the secretion rates of lactate and CO2. However, mammalian cells in

culture will also use glutamine and other AAs as energy source [49].

Depending on the experimental/computational methods used, maintenance energy of can-

cer cells was estimated to be within 1.6 and 3.7 mmol g−1 h−1 [50, 51]. The values were con-

verted from the original publications with CHO specific volume and dry mass values [13].

In other organisms, estimated/measured values widely vary and often depend on the culti-

vation conditions. In bacteria, the reported values range between 3.15–18.5 [30, 52–54], in

yeast between 0.44–2.81 mmol g−1 h−1 [32, 55–57]. However, not only does mATP change

across organisms and conditions but also during the batch as it is influenced by stress

responses [31].

The estimated Ymax
ATP is close to previously reported values in yeast where it ranges from 8.6 g

mol−1 [58] up to 9.5 or 25.1 g mol−1 depending on the carbon source [59]. Values for bacteria

are also in a wide range between 10 to 31.9 g mol−1, also depending on the carbon source [60].

To our knowledge, this information is not available for mammalian species up till now.

Finally, it is important to note that GSMMs have a large solution space. By computing a

parsimonious flux distribution the space of possible solutions is reduced. That space can be

further constrained by imposing mATP demand. However, some variability will remain

(which may partially explain the variability in the mATP estimates). Hence, adding even more

constraints could be beneficial for model performance. As an example, Lularevic et al. [61]

reduced variability in flux variability analysis of iCHO1766 by adding carbon availability con-

straints. In another study, the predictions of intracellular fluxes were improved by adding con-

straints based on enzyme kinetic information [9]. This also lead to a correct prediction of the

overflow metabolism (the secretion of lactate). Together these studies, including the current

one, show that adding more constraints to the models is necessary to fully capture cellular

metabolism and leads to better predictions. Further developments and a combination of differ-

ent approaches might lead to further improvement.

Conclusion

In this work we evaluated the prediction accuracy of CHO GSMM with pFBA. The intracellu-

lar fluxes were largely underestimated due to low energy demand and the missing non-growth

associated maintenance energy was identified as the main reason for the bad flux predictions.

The computationally estimated maintenance energy largely improved the predictions of cen-

tral carbon metabolism and it was consistent with experimentally determined maintenance

energy and with literature values for other mammalian cell lines. Adding this simple constraint

to the model leads to a big improvement in the flux prediction accuracy and should not be

neglected in constraint-based metabolic modeling of CHO.

Supporting information

S1 Table. Overview of the analysed 13C MFA datasets.

(XLSX)

S2 Table. Estimated mATP values with different objective functions.

(XLSX)

S1 Fig. Experimental vs. predicted growth rates (A) and intracellular fluxes (B). Data is

shown for biomass equation R_biomass_cho_producing as the objective function. RE

—relative error. The legend in panel (A) indicates the publication and the used CHO cell line
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(if the information was available). Empty symbols indicate non-producers.

(TIF)

S2 Fig. An example of the computational estimation of mATP. mATP was gradually

increased and the agreement between experimental and predicted fluxes was evaluated at each

step. The mATP value that lead to the smallest median relative error of the fluxes was chosen

as the optimal value. Data is shown for the dataset SV-M3 from Templeton 2017 [22] for bio-

mass equation R_biomass_cho.

(TIF)

S3 Fig. Predictions of intracellular fluxes for the individual subsystems without (-mATP)

or with mATP (+mATP) as constraint. Results are shown for R_biomass_cho as the

objective function. RE—relative error. Several outliers can be observed, which in most cases

belong to a specific dataset. For example in glycolysis +mATP, the two most overestimated

points belong to the “K1” dataset. In TCA +mATP, four underestimated points again belong

to “K1” dataset, one to “early” dataset. In pyruvate metabolism +mATP, two underestimated

points belong to “K1”, two to “early” datasets. In AA metabolism, the outliers belong to various

datasets and sub-pathways.

(TIF)

S4 Fig. Predictions with different uptake rates as objective functions. Results are shown for

R_biomass_cho as the biomass reaction. RE—relative error. The legend indicates the pub-

lication and the used CHO cell line (if the information was available). Empty symbols indicate

non-producers.

(TIF)

S5 Fig. Experimental vs. predicted intracellular fluxes using minimization of nonessential

uptakes as objectives. Results are shown for R_biomass_cho as the biomass reaction. RE

—relative error.

(TIF)

S6 Fig. Glutamine degradation at room temperature. The concentration was measured with

Bioprofile 100Plus (NOVA Biomedical, MA, USA). The degradation rate (slope of the linear

fit) during this time frame is not significant (p-value = 0.402).

(TIF)

S7 Fig. Steady state viable cell density and viability at different growth rates.

(TIF)

S8 Fig. Estimated mATP (as in Fig 6) at different P/O ratios (NADH).

(TIF)
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15. Széliová D, Schoeny H, Knez Š Troyer C, Coman C, Rampler E, et al. Robust Analytical Methods for

the Accurate Quantification of the Total Biomass Composition of Mammalian Cells. In: Methods in

PLOS COMPUTATIONAL BIOLOGY Maintenance energy improves CHO flux predictions

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009022 June 11, 2021 17 / 20

https://doi.org/10.1016/j.copbio.2017.11.015
http://www.ncbi.nlm.nih.gov/pubmed/29223005
https://doi.org/10.1038/nbt.4305
https://doi.org/10.1038/nbt.4305
http://www.ncbi.nlm.nih.gov/pubmed/30520869
https://doi.org/10.1016/j.tibtech.2019.02.007
http://www.ncbi.nlm.nih.gov/pubmed/30898338
https://doi.org/10.1016/j.cels.2017.04.009
http://www.ncbi.nlm.nih.gov/pubmed/28544881
https://doi.org/10.3390/ph6050579
http://www.ncbi.nlm.nih.gov/pubmed/24276168
https://doi.org/10.1016/j.cell.2015.05.019
http://www.ncbi.nlm.nih.gov/pubmed/26000478
https://doi.org/10.1002/biot.201400647
https://doi.org/10.1002/biot.201400647
http://www.ncbi.nlm.nih.gov/pubmed/26099571
https://doi.org/10.1016/j.cels.2016.10.020
http://www.ncbi.nlm.nih.gov/pubmed/27883890
https://doi.org/10.1016/j.ymben.2020.04.005
http://www.ncbi.nlm.nih.gov/pubmed/32330653
http://www.ncbi.nlm.nih.gov/pubmed/33040240
https://doi.org/10.1038/s41467-019-13867-y
http://www.ncbi.nlm.nih.gov/pubmed/31896772
https://doi.org/10.1038/s41467-020-15866-w
http://www.ncbi.nlm.nih.gov/pubmed/32313013
https://doi.org/10.1016/j.ymben.2020.06.002
http://www.ncbi.nlm.nih.gov/pubmed/32619503
https://doi.org/10.1002/biot.202000320
http://www.ncbi.nlm.nih.gov/pubmed/33340257
https://doi.org/10.1371/journal.pcbi.1009022


Molecular Biology. Springer US; 2020. p. 119–160. Available from: https://doi.org/10.1007/978-1-

0716-0159-4_7.

16. Dikicioglu D, Kırdar B, Oliver SG. Biomass composition: the “elephant in the room” of metabolic model-

ling. Metabolomics. 2015; 11(6):1690–1701. https://doi.org/10.1007/s11306-015-0819-2 PMID:

26491422

17. Goudar CT, Biener R, Konstantinov KB, Piret JM. Error propagation from prime variables into specific

rates and metabolic fluxes for mammalian cells in perfusion culture. Biotechnology progress. 2009; 25

(4):986–998. https://doi.org/10.1002/btpr.155 PMID: 19551875

18. Sheikholeslami Z, Jolicoeur M, Henry O. Probing the metabolism of an inducible mammalian expression

system using extracellular isotopomer analysis. Journal of biotechnology. 2013; 164(4):469–478.

https://doi.org/10.1016/j.jbiotec.2013.01.025 PMID: 23403402

19. Sheikholeslami Z, Jolicoeur M, Henry O. Elucidating the effects of postinduction glutamine feeding on

the growth and productivity of CHO cells. Biotechnology Progress. 2014; 30(3):535–546. https://doi.

org/10.1002/btpr.1907 PMID: 24692260

20. Nicolae A, Wahrheit J, Bahnemann J, Zeng AP, Heinzle E. Non-stationary 13 C metabolic flux analysis

of Chinese hamster ovary cells in batch culture using extracellular labeling highlights metabolic revers-

ibility and compartmentation. BMC systems biology. 2014; 8(1):50. https://doi.org/10.1186/1752-0509-

8-50 PMID: 24773761

21. Templeton N, Dean J, Reddy P, Young JD. Peak antibody production is associated with increased oxi-

dative metabolism in an industrially relevant fed-batch CHO cell culture. Biotechnology and Bioengi-

neering. 2013; 110(7):2013–2024. https://doi.org/10.1002/bit.24858 PMID: 23381838

22. Templeton N, Smith KD, McAtee-Pereira AG, Dorai H, Betenbaugh MJ, Lang SE, et al. Application of

13C flux analysis to identify high-productivity CHO metabolic phenotypes. Metabolic engineering. 2017;

43:218–225. https://doi.org/10.1016/j.ymben.2017.01.008 PMID: 28122259

23. McAtee Pereira AG, Walther JL, Hollenbach M, Young JD. 13C Flux Analysis Reveals that Rebalancing

Medium Amino Acid Composition can Reduce Ammonia Production while Preserving Central Carbon

Metabolism of CHO Cell Cultures. Biotechnology Journal. 2018; 13(10):1700518. https://doi.org/10.

1002/biot.201700518

24. Lewis NE, Hixson KK, Conrad TM, Lerman JA, Charusanti P, Polpitiya AD, et al. Omic data from

evolved E. coli are consistent with computed optimal growth from genome-scale models. Molecular

Systems Biology. 2010; 6(1):390. https://doi.org/10.1038/msb.2010.47 PMID: 20664636

25. Ebrahim A, Lerman JA, Palsson BO, Hyduke DR. COBRApy: COnstraints-Based Reconstruction and

Analysis for Python. BMC Systems Biology. 2013; 7(1):74. https://doi.org/10.1186/1752-0509-7-74

PMID: 23927696

26. Gurobi Optimization L. Gurobi Optimizer Reference Manual; 2020. Available from: http://www.gurobi.

com.

27. Pan X, Dalm C, Wijffels RH, Martens DE. Metabolic characterization of a CHO cell size increase phase

in fed-batch cultures. Applied microbiology and biotechnology. 2017; 101(22):8101–8113. https://doi.

org/10.1007/s00253-017-8531-y PMID: 28951949

28. Sheikh K, Förster J, Nielsen LK. Modeling Hybridoma Cell Metabolism Using a Generic Genome-Scale

Metabolic Model of Mus musculus. Biotechnology Progress. 2008; 21(1):112–121. https://doi.org/10.

1021/bp0498138

29. Chen Y, McConnell BO, Dhara VG, Naik HM, Li CT, Antoniewicz MR, et al. An unconventional uptake

rate objective function approach enhances applicability of genome-scale models for mammalian cells.

NPJ systems biology and applications. 2019; 5(1):1–11. https://doi.org/10.1038/s41540-019-0103-6

PMID: 31341637

30. Varma A, Palsson BO. Stoichiometric flux balance models quantitatively predict growth and metabolic

by-product secretion in wild-type Escherichia coli W3110. Applied and environmental microbiology.

1994; 60(10):3724–3731. https://doi.org/10.1128/AEM.60.10.3724-3731.1994 PMID: 7986045

31. Lahtvee PJ, Kumar R, Hallström BM, Nielsen J. Adaptation to different types of stress converge on mito-

chondrial metabolism. Molecular Biology of the Cell. 2016; 27:2505–2514. https://doi.org/10.1091/mbc.

E16-03-0187 PMID: 27307591

32. Tomàs-Gamisans M, Ferrer P, Albiol J. Fine-tuning the P. pastoris iMT1026 genome-scale metabolic

model for improved prediction of growth on methanol or glycerol as sole carbon sources. Microbial Bio-

technology. 2018; 11(1):224–237. https://doi.org/10.1111/1751-7915.12871 PMID: 29160039

33. Hinkle PC. P/O ratios of mitochondrial oxidative phosphorylation. Biochimica et Biophysica Acta (BBA)-

Bioenergetics. 2005; 1706(1-2):1–11. https://doi.org/10.1016/j.bbabio.2004.09.004 PMID: 15620362

34. Wiechert W. 13C metabolic flux analysis. Metabolic engineering. 2001; 3(3):195–206. https://doi.org/

10.1006/mben.2001.0188 PMID: 11461141

PLOS COMPUTATIONAL BIOLOGY Maintenance energy improves CHO flux predictions

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009022 June 11, 2021 18 / 20

https://doi.org/10.1007/978-1-0716-0159-4_7
https://doi.org/10.1007/978-1-0716-0159-4_7
https://doi.org/10.1007/s11306-015-0819-2
http://www.ncbi.nlm.nih.gov/pubmed/26491422
https://doi.org/10.1002/btpr.155
http://www.ncbi.nlm.nih.gov/pubmed/19551875
https://doi.org/10.1016/j.jbiotec.2013.01.025
http://www.ncbi.nlm.nih.gov/pubmed/23403402
https://doi.org/10.1002/btpr.1907
https://doi.org/10.1002/btpr.1907
http://www.ncbi.nlm.nih.gov/pubmed/24692260
https://doi.org/10.1186/1752-0509-8-50
https://doi.org/10.1186/1752-0509-8-50
http://www.ncbi.nlm.nih.gov/pubmed/24773761
https://doi.org/10.1002/bit.24858
http://www.ncbi.nlm.nih.gov/pubmed/23381838
https://doi.org/10.1016/j.ymben.2017.01.008
http://www.ncbi.nlm.nih.gov/pubmed/28122259
https://doi.org/10.1002/biot.201700518
https://doi.org/10.1002/biot.201700518
https://doi.org/10.1038/msb.2010.47
http://www.ncbi.nlm.nih.gov/pubmed/20664636
https://doi.org/10.1186/1752-0509-7-74
http://www.ncbi.nlm.nih.gov/pubmed/23927696
http://www.gurobi.com
http://www.gurobi.com
https://doi.org/10.1007/s00253-017-8531-y
https://doi.org/10.1007/s00253-017-8531-y
http://www.ncbi.nlm.nih.gov/pubmed/28951949
https://doi.org/10.1021/bp0498138
https://doi.org/10.1021/bp0498138
https://doi.org/10.1038/s41540-019-0103-6
http://www.ncbi.nlm.nih.gov/pubmed/31341637
https://doi.org/10.1128/AEM.60.10.3724-3731.1994
http://www.ncbi.nlm.nih.gov/pubmed/7986045
https://doi.org/10.1091/mbc.E16-03-0187
https://doi.org/10.1091/mbc.E16-03-0187
http://www.ncbi.nlm.nih.gov/pubmed/27307591
https://doi.org/10.1111/1751-7915.12871
http://www.ncbi.nlm.nih.gov/pubmed/29160039
https://doi.org/10.1016/j.bbabio.2004.09.004
http://www.ncbi.nlm.nih.gov/pubmed/15620362
https://doi.org/10.1006/mben.2001.0188
https://doi.org/10.1006/mben.2001.0188
http://www.ncbi.nlm.nih.gov/pubmed/11461141
https://doi.org/10.1371/journal.pcbi.1009022


35. Kilburn DG, Lilly MD, Webb FC. The Energetics of Mammalian Cell Growth. Journal of Cell Science.

1969; 4(3):645–654. https://doi.org/10.1242/jcs.4.3.645 PMID: 5817088

36. Lunt SY, Vander Heiden MG. Aerobic glycolysis: meeting the metabolic requirements of cell prolifera-

tion. Annual review of cell and developmental biology. 2011; 27:441–464. https://doi.org/10.1146/

annurev-cellbio-092910-154237 PMID: 21985671

37. Ellgaard L, Sevier CS, Bulleid NJ. How Are Proteins Reduced in the Endoplasmic Reticulum? Trends in

Biochemical Sciences. 2018; 43(1):32–43. https://doi.org/10.1016/j.tibs.2017.10.006 PMID: 29153511

38. Filosa S, Fico A, Paglialunga F, Balestrieri M, Crooke A, Verde P, et al. Failure to increase glucose con-

sumption through the pentose-phosphate pathway results in the death of glucose-6-phosphate dehy-

drogenase gene-deleted mouse embryonic stem cells subjected to oxidative stress. Biochemical

Journal. 2003; 370(3):935–943. https://doi.org/10.1042/BJ20021614 PMID: 12466018

39. Dahodwala H, Lee KH. The fickle CHO: a review of the causes, implications, and potential alleviation of

the CHO cell line instability problem. Current opinion in biotechnology. 2019; 60:128–137. https://doi.

org/10.1016/j.copbio.2019.01.011 PMID: 30826670

40. Vcelar S, Jadhav V, Melcher M, Auer N, Hrdina A, Sagmeister R, et al. Karyotype variation of CHO host

cell lines over time in culture characterized by chromosome counting and chromosome painting. Bio-

technology and bioengineering. 2018; 115(1):165–173. https://doi.org/10.1002/bit.26453 PMID:

28921524

41. Hayter PM, Curling EM, Baines AJ, Jenkins N, Salmon I, Strange PG, et al. Glucose-limited chemostat

culture of chinese hamster ovary cells producing recombinant human interferon-γ. Biotechnology and

bioengineering. 1992; 39(3):327–335. https://doi.org/10.1002/bit.260390311 PMID: 18600949

42. Follstad BD, Balcarcel RR, Stephanopoulos G, Wang DI. Metabolic flux analysis of hybridoma continu-

ous culture steady state multiplicity. Biotechnology and Bioengineering. 1999; 63(6):675–683. https://

doi.org/10.1002/(SICI)1097-0290(19990620)63:6%3C675::AID-BIT5%3E3.0.CO;2-R PMID: 10397824

43. Europa AF, Gambhir A, Fu PC, Hu WS. Multiple steady states with distinct cellular metabolism in contin-

uous culture of mammalian cells. Biotechnology and bioengineering. 2000; 67(1):25–34. https://doi.org/

10.1002/(SICI)1097-0290(20000105)67:1%3C25::AID-BIT4%3E3.0.CO;2-K PMID: 10581433

44. Altamirano C, Illanes A, Casablancas A, Gamez X, Cairó JJ, Godia C. Analysis of CHO cells metabolic
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