193 research outputs found

    Peptide substrate identification for yeast Hsp40 Ydj1 by screening the phage display library

    Get PDF
    We have identified a peptide substrate for molecular chaperone Hsp40 Ydj1 by utilizing the combination of phage display library screening and isothemol titration calirimetry (ITC). The initial peptide substrate screening for Hsp40 Ydj1 has been carried out by utilizing a 7-mer phage display library. The peptide sequences from the bio-panning were synthesized and object to the direct affinity measurement for Hsp40 Ydj1 by isothemol titration calirimetry studies. The peptide which has the measurable affinity with Ydj1 shows enriched hydrophobic residues in the middle of the substrate fragment. The peptide substrate specificity for molecular chaperone Hsp40 has been analyzed

    Unique Responses of Stem Cell-Derived Vascular Endothelial and Mesenchymal Cells to High Levels of Glucose

    Get PDF
    Diabetes leads to complications in selected organ systems, and vascular endothelial cell (EC) dysfunction and loss is the key initiating and perpetuating step in the development of these complications. Experimental and clinical studies have shown that hyperglycemia leads to EC dysfunction in diabetes. Vascular stem cells that give rise to endothelial progenitor cells (EPCs) and mesenchymal progenitor cells (MPCs) represent an attractive target for cell therapy for diabetic patients. Whether these vascular stem/progenitor cells succumb to the adverse effects of high glucose remains unknown. We sought to determine whether adult vascular stem/progenitor cells display cellular activation and dysfunction upon exposure to high levels of glucose as seen in diabetic complications. Mononuclear cell fraction was prepared from adult blood and bone marrow. EPCs and MPCs were derived, characterized, and exposed to either normal glucose (5 mmol/L) or high glucose levels (25 mmol/L). We then assayed for cell activity and molecular changes following both acute and chronic exposure to high glucose. Our results show that high levels of glucose do not alter the derivation of either EPCs or MPCs. The adult blood-derived EPCs were also resistant to the effects of glucose in terms of growth. Acute exposure to high glucose levels increased caspase-3 activity in EPCs (1.4x increase) and mature ECs (2.3x increase). Interestingly, MPCs showed a transient reduction in growth upon glucose challenge. Our results also show that glucose skews the differentiation of MPCs towards the adipocyte lineage while suppressing other mesenchymal lineages. In summary, our studies show that EPCs are resistant to the effects of high levels of glucose, even following chronic exposure. The findings further show that hyperglycemia may have detrimental effects on the MPCs, causing reduced growth and altering the differentiation potential

    Modulation of Cell Adhesion and Migration by the Histone Methyltransferase Subunit mDpy-30 and Its Interacting Proteins

    Get PDF
    We have previously shown that a subset of mDpy-30, an accessory subunit of the nuclear histone H3 lysine 4 methyltransferase (H3K4MT) complex, also localizes at the trans-Golgi network (TGN), where its recruitment is mediated by the TGN-localized ARF guanine nucleotide exchange factor (ArfGEF) BIG1. Depletion of mDpy-30 inhibits the endosome-to-TGN transport of internalized CIMPR receptors and concurrently promotes their accumulation at the cell protrusion. These observations suggest mDpy-30 may play a novel role at the crossroads of endosomal trafficking, nuclear transcription and adhesion/migration. Here we provide novel mechanistic and functional insight into this association. First, we demonstrate a direct interaction between mDpy-30 and BIG1 and locate the binding region in the N-terminus of BIG1. Second, we provide evidence that the depletion or overexpression of mDpy-30 enhances or inhibits cellular adhesion/migration of glioma cells in vitro, respectively. A similar increase in cell adhesion/migration is observed in cells with reduced levels of BIG1 or other H3K4MT subunits. Third, knockdown of mDpy-30, BIG1, or the RbBP5 H3K4MT subunit increases the targeting of β1 integrin to cell protrusions, and suppression of H3K4MT activity by depleting mDpy-30 or RbBP5 leads to increased protein and mRNA levels of β1 integrin. Moreover, stimulation of cell adhesion/migration via mDpy-30 knockdown is abolished after treating cells with a function-blocking antibody to β1 integrin. Taken together, these data indicate that mDpy-30 and its interacting proteins function as a novel class of cellular adhesion/migration modulators partially by affecting the subcellular distribution of endosomal compartments as well as the expression of key adhesion/migration proteins such as β1 integrin

    Living with a Crucial Decision: A Qualitative Study of Parental Narratives Three Years after the Loss of Their Newborn in the NICU

    Get PDF
    BACKGROUND: The importance of involving parents in the end-of-life decision-making-process (EOL DMP) for their child in the neonatal intensive care unit (NICU) is recognised by ethical guidelines in numerous countries. However, studies exploring parents' opinions on the type of involvement report conflicting results. This study sought to explore parents' experience of the EOL DMP for their child in the NICU. METHODS: The study used a retrospective longitudinal design with a qualitative analysis of parental experience 3 years after the death of their child in four NICUs in France. 53 face-to-face interviews and 80 telephone interviews were conducted with 164 individuals. Semi-structured interviews were conducted to explore how parents perceived their role in the decision process, what they valued about physicians' attitudes in this situation and whether their long-term emotional well being varied according to their perceived role in the EOL DMP. FINDINGS: Qualitative analysis identified four types of perceived role in the DMP: shared, medical, informed parental decision, and no decision. Shared DM was the most appreciated by parents. Medical DM was experienced as positive only when it was associated with communication. Informed parental DM was associated with feelings of anxiousness and abandonment. The physicians' attitudes that were perceived as helpful in the long term were explicit sharing of responsibility, clear expression of staff preferences, and respectful care and language toward the child. INTERPRETATION: Parents find it valuable to express their opinion in the EOL DMP of their child. Nonetheless, they do need continuous emotional support and an explicit share of the responsibility for the decision. As involvement preferences and associated feelings can vary, parents should be able to decide what role they want to play. However, our study suggests that fully autonomous decisions should be misadvised in these types of tragic choices

    Derivation of Chondrogenically-Committed Cells from Human Embryonic Cells for Cartilage Tissue Regeneration

    Get PDF
    Background: Heterogeneous and uncontrolled differentiation of human embryonic stem cells (hESCs) in embryoid bodies (EBs) limits the potential use of hESCs for cell-based therapies. More efficient strategies are needed for the commitment and differentiation of hESCs to produce a homogeneous population of specific cell types for tissue regeneration applications. Methodology/Principal Findings: We report here that significant chondrocytic commitment of feeder-free cultured human embryonic stem cells (FF-hESCs), as determined by gene expression and immunostaining analysis, was induced by coculture with primary chondrocytes. Furthermore, a dynamic expression profile of chondrocyte-specific genes was observed during monolayer expansion of the chondrogenically-committed cells. Chondrogenically-committed cells synergistically responded to transforming growth factor-b1 (TGF-b1) and b1-integrin activating antibody by increasing tissue mass in pellet culture. In addition, when encapsulated in hydrogels, these cells formed cartilage tissue both in vitro and in vivo. In contrast, the absence of chondrocyte co-culture did not result in an expandable cell population from FF-hESCs. Conclusions/Significance: The direct chondrocytic commitment of FF-hESCs can be induced by morphogenetic factor

    Differential properties of human ACL and MCL stem cells may be responsible for their differential healing capacity

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The human anterior cruciate ligament (hACL) and medial collateral ligament (hMCL) of the knee joint are frequently injured, especially in athletic settings. It has been known that, while injuries to the MCL typically heal with conservative treatment, ACL injuries usually do not heal. As adult stem cells repair injured tissues through proliferation and differentiation, we hypothesized that the hACL and hMCL contain stem cells exhibiting unique properties that could be responsible for the differential healing capacity of the two ligaments.</p> <p>Methods</p> <p>To test the above hypothesis, we derived ligament stem cells from normal hACL and hMCL samples from the same adult donors using tissue culture techniques and characterized their properties using immunocytochemistry, RT-PCR, and flow cytometry.</p> <p>Results</p> <p>We found that both hACL stem cells (hACL-SCs) and hMCL stem cells (hMCL-SCs) formed colonies in culture and expressed stem cell markers nucleostemin and stage-specific embryonic antigen-4 (SSEA-4). Moreover, both hACL-SCs and hMCL-SCs expressed CD surface markers for mesenchymal stem cells, including CD44 and CD90, but not those markers for vascular cells, CD31, CD34, CD45, and CD146. However, hACL-SCs differed from hMCL-SCs in that the size and number of hACL-SC colonies in culture were much smaller and grew more slowly than hMCL-SC colonies. Moreover, fewer hACL-SCs in cell colonies expressed stem cell markers STRO-1 and octamer-binding transcription factor-4 (Oct-4) than hMCL-SCs. Finally, hACL-SCs had less multi-differentiation potential than hMCL-SCs, evidenced by differing extents of adipogenesis, chondrogenesis, and osteogenesis in the respective induction media.</p> <p>Conclusions</p> <p>This study shows for the first time that hACL-SCs are intrinsically different from hMCL-SCs. We suggest that the differences in their properties contribute to the known disparity in healing capabilities between the two ligaments.</p

    Autoimmunity in Arabidopsis acd11 Is Mediated by Epigenetic Regulation of an Immune Receptor

    Get PDF
    Certain pathogens deliver effectors into plant cells to modify host protein targets and thereby suppress immunity. These target modifications can be detected by intracellular immune receptors, or Resistance (R) proteins, that trigger strong immune responses including localized host cell death. The accelerated cell death 11 (acd11) “lesion mimic” mutant of Arabidopsis thaliana exhibits autoimmune phenotypes such as constitutive defense responses and cell death without pathogen perception. ACD11 encodes a putative sphingosine transfer protein, but its precise role during these processes is unknown. In a screen for lazarus (laz) mutants that suppress acd11 death we identified two genes, LAZ2 and LAZ5. LAZ2 encodes the histone lysine methyltransferase SDG8, previously shown to epigenetically regulate flowering time via modification of histone 3 (H3). LAZ5 encodes an RPS4-like R-protein, defined by several dominant negative alleles. Microarray and chromatin immunoprecipitation analyses showed that LAZ2/SDG8 is required for LAZ5 expression and H3 lysine 36 trimethylation at LAZ5 chromatin to maintain a transcriptionally active state. We hypothesize that LAZ5 triggers cell death in the absence of ACD11, and that cell death in other lesion mimic mutants may also be caused by inappropriate activation of R genes. Moreover, SDG8 is required for basal and R protein-mediated pathogen resistance in Arabidopsis, revealing the importance of chromatin remodeling as a key process in plant innate immunity

    Nanovesicles from adipose-derived mesenchymal stem cells inhibit T lymphocyte trafficking and ameliorate chronic experimental autoimmune encephalomyelitis

    Get PDF
    Cell based-therapies represent promising strategies for the treatment of neurological diseases. We have previously shown that adipose stem cells (ASC) ameliorate chronic experimental autoimmune encephalomyelitis (EAE). Recent evidence indicates that most ASC paracrine effects are mediated by extracellular vesicles, i.e. micro- and nanovesicles (MVs and NVs). We show that preventive intravenous administration of NVs isolated from ASC (ASC-NVs) before disease onset significantly reduces the severity of EAE and decreases spinal cord inflammation and demyelination, whereas therapeutic treatment with ASC-NVs does not ameliorate established EAE. This treatment marginally inhibits antigen-specific T cell activation, while reducing microglial activation and demyelination in the spinal cord. Importantly, ASC-NVs inhibited integrin-dependent adhesion of encephalitogenic T cells in vitro, with no effect on adhesion molecule expression. In addition, intravital microscopy showed that encephalitogenic T cells treated with ASC NVs display a significantly reduced rolling and firm adhesion in inflamed spinal cord vessels compared to untreated cells. Our results show that ASC-NVs ameliorate EAE pathogenesis mainly by inhibiting T cell extravasation in the inflamed CNS, suggesting that NVs may represent a novel therapeutic approach in neuro-inflammatory diseases, enabling the safe administration of ASC effector factors
    corecore