121 research outputs found

    Maria Auxiliadora Hospital in Lima, Peru as a model for neurosurgical outreach to international charity hospitals

    Get PDF
    A myriad of geopolitical and financial obstacles have kept modern neurosurgery from effectively reaching the citizens of the developing world. Targeted neurosurgical outreach by academic neurosurgeons to equip neurosurgical operating theaters and train local neurosurgeons is one method to efficiently and cost effectively improve sustainable care provided by international charity hospitals. The International Neurosurgical Children’s Association (INCA) effectively improved the available neurosurgical care in the Maria Auxiliadora Hospital of Lima, Peru through the advancement of local specialist education and training. Neurosurgical equipment and training were provided for the local neurosurgeons by a mission team from the University of California at San Diego. At the end of 3 years, with one intensive week trip per year, the host neurosurgeons were proficiently and independently applying microsurgical techniques to previously performed operations, and performing newly learned operations such as neuroendoscopy and minimally invasive neurosurgery. Our experiences may serve as a successful template for the execution of other small scale, sustainable neurosurgery missions worldwide

    Congenital anomalies in low- and middle-income countries: the unborn child of global surgery.

    Get PDF
    Surgically correctable congenital anomalies cause a substantial burden of global morbidity and mortality. These anomalies disproportionately affect children in low- and middle-income countries (LMICs) due to sociocultural, economic, and structural factors that limit the accessibility and quality of pediatric surgery. While data from LMICs are sparse, available evidence suggests that the true human and financial cost of congenital anomalies is grossly underestimated and that pediatric surgery is a cost-effective intervention with the potential to avert significant premature mortality and lifelong disability

    Exome sequencing implicates genetic disruption of prenatal neuro-gliogenesis in sporadic congenital hydrocephalus

    Get PDF
    Congenital hydrocephalus (CH), characterized by enlarged brain ventricles, is considered a disease of excessive cerebrospinal fluid (CSF) accumulation and thereby treated with neurosurgical CSF diversion with high morbidity and failure rates. The poor neurodevelopmental outcomes and persistence of ventriculomegaly in some post-surgical patients highlight our limited knowledge of disease mechanisms. Through whole-exome sequencing of 381 patients (232 trios) with sporadic, neurosurgically treated CH, we found that damaging de novo mutations account for >17% of cases, with five different genes exhibiting a significant de novo mutation burden. In all, rare, damaging mutations with large effect contributed to ~22% of sporadic CH cases. Multiple CH genes are key regulators of neural stem cell biology and converge in human transcriptional networks and cell types pertinent for fetal neuro-gliogenesis. These data implicate genetic disruption of early brain development, not impaired CSF dynamics, as the primary pathomechanism of a significant number of patients with sporadic CH

    De Novo Mutation in Genes Regulating Neural Stem Cell Fate in Human Congenital Hydrocephalus

    Get PDF
    Congenital hydrocephalus (CH), featuring markedly enlarged brain ventricles, is thought to arise from failed cerebrospinal fluid (CSF) homeostasis and is treated with lifelong surgical CSF shunting with substantial morbidity. CH pathogenesis is poorly understood. Exome sequencing of 125 CH trios and 52 additional probands identified three genes with significant burden of rare damaging de novo or transmitted mutations: TRIM71 (p = 2.15 × 10−7), SMARCC1 (p = 8.15 × 10−10), and PTCH1 (p = 1.06 × 10−6). Additionally, two de novo duplications were identified at the SHH locus, encoding the PTCH1 ligand (p = 1.2 × 10−4). Together, these probands account for ∼10% of studied cases. Strikingly, all four genes are required for neural tube development and regulate ventricular zone neural stem cell fate. These results implicate impaired neurogenesis (rather than active CSF accumulation) in the pathogenesis of a subset of CH patients, with potential diagnostic, prognostic, and therapeutic ramifications

    Induction of Olig2+ Precursors by FGF Involves BMP Signalling Blockade at the Smad Level

    Get PDF
    During normal development oligodendrocyte precursors (OPCs) are generated in the ventral spinal cord in response to Sonic hedgehog (Shh) signalling. There is also a second, late wave of oligodendrogenesis in the dorsal spinal cord independent of Shh activity. Two signalling pathways, controlled by bone morphogenetic protein and fibroblast growth factor (FGF), are active players in dorsal spinal cord specification. In particular, BMP signalling from the roof plate has a crucial role in setting up dorsal neural identity and its inhibition is sufficient to generate OPCs both in vitro and in vivo. In contrast, FGF signalling can induce OPC production from dorsal spinal cord cultures in vitro. In this study, we examined the cross-talk between mitogen-activated protein kinase (MAPK) and BMP signalling in embryonic dorsal spinal cord cultures at the SMAD1/5/8 (SMAD1) transcription factor level, the main effectors of BMP activity. We have previously shown that FGF2 treatment of neural precursor cells (NPCs) derived from rat E14 dorsal spinal cord is sufficient to generate OPCs in vitro. Utilising the same system, we now show that FGF prevents BMP-induced nuclear localisation of SMAD1-phosphorylated at the C-terminus (C-term-pSMAD1). This nuclear exclusion of C-term-pSMAD1 is dependent on MAPK activity and correlates with OLIG2 upregulation, the obligate transcription factor for oligodendrogenesis. Furthermore, inhibition of the MAPK pathway abolishes OLIG2 expression. We also show that SMAD4, which acts as a common partner for receptor-regulated Smads including SMAD1, associates with a Smad binding site in the Olig2 promoter and dissociates from it upon differentiation. Taken together, these results suggest that FGF can promote OPC generation from embryonic NPCs by counteracting BMP signalling at the Smad1 transcription factor level and that Smad-containing transcriptional complexes may be involved in direct regulation of the Olig2 promoter

    Development of a Unifying Target and Consensus Indicators for Global Surgical Systems Strengthening: Proposed by the Global Alliance for Surgery, Obstetric, Trauma, and Anaesthesia Care (The G4 Alliance)

    Get PDF
    After decades on the margins of primary health care, surgical and anaesthesia care is gaining increasing priority within the global development arena. The 2015 publications of the Disease Control Priorities third edition on Essential Surgery and the Lancet Commission on Global Surgery created a compelling evidenced-based argument for the fundamental role of surgery and anaesthesia within cost-effective health systems strengthening global strategy. The launch of the Global Alliance for Surgical, Obstetric, Trauma, and Anaesthesia Care in 2015 has further coordinated efforts to build priority for surgical care and anaesthesia. These combined efforts culminated in the approval of a World Health Assembly resolution recognizing the role of surgical care and anaesthesia as part of universal health coverage. Momentum gained from these milestones highlights the need to identify consensus goals, targets and indicators to guide policy implementation and track progress at the national level. Through an open consultative process that incorporated input from stakeholders from around the globe, a global target calling for safe surgical and anaesthesia care for 80% of the world by 2030 was proposed. In order to achieve this target, we also propose 15 consensus indicators that build on existing surgical systems metrics and expand the ability to prioritize surgical systems strengthening around the world
    • …
    corecore