15 research outputs found

    Study of evaluation of groundwater in Gadilam basin using hydrogeochemical and isotope data

    Get PDF
    Gadilam river basin has gained its importance due to the presence of Neyveli Lignite open cast mines and other industrial complexes. It is also due to extensive depressurization of Cuddalore aquifer, and bore wells for New Veeranam Scheme are constructed downstream of the basin. Geochemical indicators of groundwater were used to identify the chemical processes that control hydrogeochemistry. Chemical parameters of groundwater such as pH, electrical conductivity, total dissolved solids, sodium (Na+), potassium (K+), calcium (Ca+), magnesium (Mg+), bicarbonate (HCO-3 ), sulfate (SO-4 ),phosphate (PO-4 ), and silica (H4SiO4) were determined. Interpretation of hydrogeochemical data suggests that leaching of ions followed by weathering and anthropogenic impact controls the chemistry of the groundwater. Isotopic study reveals that recharge from meteoric source in sedimentary terrain and rock-water interaction with significant evaporation prevails in hard rock region

    Delineation of Natural and Anthropogenic Process Controlling Hydrogeochemistry of Layered Aquifer Sequence

    No full text
    Groundwater is the source for many activities in urban regions and the quality plays a significant role in determination of its usage. In coastal regions the situation becomes more complex due to the interplay of complex chemical processes like natural weathering, anthropogenic activities and sea water intrusion. Hence an attempt has been made in this study to delineate these processes and to identify the regions dominated by them. In this regard, 92 groundwater samples were collected and analysed for major cations and anions. Among the analysed parameters the ratios of the cations like Ca/Mg, (Ca + Mg)*/HCO3:(Na + K)*/HCO3 were used to identify the process of weathering. Moreover, the ternary plots of cations and selected anions were also used to identify the weathering and the anthropogenic processes. HCO3 − and SiO2 in groundwater were used to unravel the nature of weathering, supported by pH and pCO2 observations. HCO3 −-derived by the carbonate dissolution and silicate weathering were calculated from the total HCO3 − and it was found that HCO3 − derived from the carbonate rock dissolution is dominant in alluvium, tertiary and cretaceous formations due to the presence of kankar, calcareous sandstone and limestone. The (HCO3 + SiO2)/(Cl + NO3) ratios were used to demarcate the regions of weathering and anthropogenic activities and it was found that the central and north eastern part of the study area is dominated by the anthropogenic activities

    Identification of Recharge Processes in Groundwater in Hard Rock Aquifers of Madurai District Using Stable Isotopes

    No full text
    Stable isotopes of H and O are the integral parts of water molecule and serve as ideal tracers to understand the recharge processes in groundwater. Hence, a study has been conducted in hard rock aquifers of Madurai District of Tamilnadu to identify the recharge processes using stable isotopes. A total of 54 groundwater samples were collected representing the entire district from various lithounits during post monsoon. Samples were analysed for pH, EC, Ca2+, Mg2+, Na+, K+, Cl− HCO3−, SO42−, PO43−, H4SiO4, F−, δ18O and δD. Cl− and HCO3− were the dominant ions in groundwater samples. Average values of Cl− and HCO3− ranged from 247 and 244 mg/L in fissile hornblende biotite gneiss, 262 and 268 mg/L in Charnockite, 75 and 185 mg/L in quartzite, 323 and 305 mg/L in granite, 524 and 253 mg/L in floodplain alluvium rock types. Geochemical signatures of groundwater were used to identify the chemical processes that control hydrogeochemistry. Interpretation of δ18O and δD indicates recharge from the meteoric water in charnockite, quartzite, granite and some samples of fissile hornblende biotite gneiss. It is also inferred that recharge take place from evaporated water in floodplain alluvium and fissile hornblende biotite gneiss

    A study on groundwater geochemistry and water quality in layered aquifers system of Pondicherry region, southeast India

    Get PDF
    Geochemical signatures of groundwater in the Pondicherry region, south India, were determined. The coastal aquifers are fragile and this situation becomes more intense in layered aquifer systems like that of the Pondicherry region. In this region, groundwater occurs in alluvium, Lower Cuddalore, Upper Cuddalore, Tertiary, Cretaceous and mixed aquifers. The geochemical signature of groundwater in these formations was studied by collecting 93 groundwater samples. The collected samples from specific formations were analysed for physical parameters, such as electrical conductivity (EC), pH and major ion concentrations, such as Ca, Mg, Na, K, CI, HCO3, PO4 and SO4. The results of the analysis were interpreted with geology; the ionic concentrations in the groundwater vary spatially and temporally. The abundance of these ions are in the following order: Na > Ca > Mg > K = Cl > HCO3 > SO4. Interpretation of analytical data shows that Ca–Na and Cl–SO4–HCO3 is the dominant facies in all the formations. Groundwater in the area is generally hard and fresh-brackish in most of the formations and brackish in nature in alluvium formation. The sodium absorption ratio shows that most of the samples are grouped under excellent category to good category in all the formations. The residual sodium carbonate also are in good category in all the formations. Chloro-alkaline indices reveal that the majority of samples show negative values in all the litho units indicating the exchange of Na and K in groundwater with Mg or Ca in rock. Scholler classification of water indicates that longer residence time of water with more prominent base exchange. High EC and TDS values in certain locations of alluvial, Upper Cuddalore and Cretaceous formations prove to be unsuitable for drinking and irrigation purposes
    corecore