27 research outputs found

    Genetic Dissection of Acute Ethanol Responsive Gene Networks in Prefrontal Cortex: Functional and Mechanistic Implications

    Get PDF
    Background Individual differences in initial sensitivity to ethanol are strongly related to the heritable risk of alcoholism in humans. To elucidate key molecular networks that modulate ethanol sensitivity we performed the first systems genetics analysis of ethanol-responsive gene expression in brain regions of the mesocorticolimbic reward circuit (prefrontal cortex, nucleus accumbens, and ventral midbrain) across a highly diverse family of 27 isogenic mouse strains (BXD panel) before and after treatment with ethanol. Results Acute ethanol altered the expression of ~2,750 genes in one or more regions and 400 transcripts were jointly modulated in all three. Ethanol-responsive gene networks were extracted with a powerful graph theoretical method that efficiently summarized ethanol\u27s effects. These networks correlated with acute behavioral responses to ethanol and other drugs of abuse. As predicted, networks were heavily populated by genes controlling synaptic transmission and neuroplasticity. Several of the most densely interconnected network hubs, including Kcnma1 and Gsk3β, are known to influence behavioral or physiological responses to ethanol, validating our overall approach. Other major hub genes like Grm3, Pten and Nrg3 represent novel targets of ethanol effects. Networks were under strong genetic control by variants that we mapped to a small number of chromosomal loci. Using a novel combination of genetic, bioinformatic and network-based approaches, we identified high priority cis-regulatory candidate genes, including Scn1b,Gria1, Sncb and Nell2. Conclusions The ethanol-responsive gene networks identified here represent a previously uncharacterized intermediate phenotype between DNA variation and ethanol sensitivity in mice. Networks involved in synaptic transmission were strongly regulated by ethanol and could contribute to behavioral plasticity seen with chronic ethanol. Our novel finding that hub genes and a small number of loci exert major influence over the ethanol response of gene networks could have important implications for future studies regarding the mechanisms and treatment of alcohol use disorders

    Neuronal mechanisms and circuits underlying repetitive behaviors in mouse models of autism spectrum disorder

    Get PDF
    Autism spectrum disorder (ASD) refers to a broad spectrum of neurodevelopmental disorders characterized by three central behavioral symptoms: impaired social interaction, impaired social communication, and restricted and repetitive behaviors. However, the symptoms are heterogeneous among patients and a number of ASD mouse models have been generated containing mutations that mimic the mutations found in human patients with ASD. Each mouse model was found to display a unique set of repetitive behaviors. In this review, we summarize the repetitive behaviors of the ASD mouse models and variations found in their neural mechanisms including molecular and electrophysiological features. We also propose potential neuronal mechanisms underlying these repetitive behaviors, focusing on the role of the cortico-basal ganglia-thalamic circuits and brain regions associated with both social and repetitive behaviors. Further understanding of molecular and circuitry mechanisms of the repetitive behaviors associated with ASD is necessary to aid the development of effective treatments for these disorders

    Comparison of the Reinforcing Properties of Nicotine and Cigarette Smoke Extract in Rats

    No full text
    Tobacco dependence is difficult to treat, with the vast majority of those who try to quit relapsing within the first year. Improvements in smoking cessation therapies may be achieved by improving current preclinical research methods. However, most experimental tests in animals use nicotine alone, ignoring the 8000 other constituents found in tobacco smoke. To improve on this model, we have used self-administration to test the reinforcing properties of aqueous cigarette smoke extract (CSE) in rats, made by bubbling cigarette smoke through a saline solution. CSE is more potent than nicotine alone in both the acquisition and maintenance of self-administration, but did not exhibit higher progressive ratio responding. Mecamylamine and varenicline had similar potencies to block nicotine and CSE self-administration, indicating the involvement of nicotinic receptors in CSE reinforcement. Following extinction of responding, reinstatement was triggered by exposing animals to a pharmacological stressor, yohimbine (2.5 mg/kg, i.p.), alone and in combination with cues. Animals that self-administered CSE were significantly more sensitive to stress-induced reinstatement than those that self-administered nicotine. Ligand binding autoradiography studies showed nicotine and CSE to have similar affinities for different nicotinic receptor types. CSE significantly reduced MAO-A and MAO-B activities in vitro, whereas nicotine did not. Although CSE inhibition of MAO-A activity in vitro was found to be partially irreversible, irreversible inhibition was not observed in vivo. These experiments show that CSE is an effective reinforcer acting via nicotinic receptors. Furthermore, it better models MAO inhibition and is more sensitive to stress-induced reinstatement than nicotine alone, which is a potent trigger for relapse in smokers
    corecore