7 research outputs found
Composition and Function of Haemolymphatic Tissues in the European Common Shrew
BACKGROUND: Studies of wild animals responding to their native parasites are essential if we are to understand how the immune system functions in the natural environment. While immune defence may bring increased survival, this may come at a resource cost to other physiological traits, including reproduction. Here, we tested the hypothesis that wild common shrews (Sorex araneus), which produce large numbers of offspring during the one breeding season of their short life span, forgo investment in immunity and immune system maintenance, as increased longevity is unlikely to bring further opportunities for mating. In particular, we predicted that adult shrews, with shorter expected lifespans, would not respond as effectively as young animals to infection. METHODOLOGY/PRINCIPAL FINDINGS: We examined haemolymphatic tissues from wild-caught common shrews using light and transmission electron microscopy, applied in conjunction with immunohistology. We compared composition and function of these tissues in shrews of different ages, and the extent and type of inflammatory reactions observed in response to natural parasitic infections. All ages seemed able to mount systemic, specific immune responses, but adult shrews showed some signs of lymphatic tissue exhaustion: lymphatic follicles in adults (n = 21) were both smaller than those in sub-adults (n = 18; Wald = 11.1, p<0.05) and exhibited greater levels of depletion (Wald = 13.3, p<0.05). CONCLUSIONS/SIGNIFICANCE: Contrary to our expectations, shrews respond effectively to their natural parasites, and show little indication of immunosenescence as adults. The pancreas of Aselli, a unique lymphoid organ, may aid in providing efficient immune responses through the storage of large numbers of plasma cells. This may allow older animals to react effectively to previously encountered parasites, but infection by novel agents, and eventual depletion of plasma cell reserves, could both still be factors in the near-synchronous mortality of adult shrews observed shortly after breeding
A new and selective cycle for dehydrogenation of linear and cyclic alkanes under mild conditions using a base metal
Selectively converting linear alkanes to alpha-olefins under mild conditions is a highly desirable transformation given the abundance of alkanes as well as the use of olefins as building blocks in the chemical community. Until now, this reaction has been primarily the remit of noble-metal catalysts, despite extensive work showing that base-metal alkylidenes can mediate the reaction in a stoichiometric fashion. Here, we show how the presence of a hydrogen acceptor, such as the phosphorus ylide, when combined with the alkylidene complex (PNP)Ti=(CHBu)-Bu-t(CH3) (PNP=N[2-P(CHMe2)(2)-4-methylphenyl](2)(-)), catalyses the dehydrogenation of cycloalkanes to cyclic alkenes, and linear alkanes with chain lengths of C-4 to C-8 to terminal olefins under mild conditions. This Article represents the first example of a homogeneous and selective alkane dehydrogenation reaction using a base-metal titanium catalyst. We also propose a unique mechanism for the transfer dehydrogenation of hydrocarbons to olefins and discuss a complete cycle based on a combined experimental and computational study
© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.161sciescopu