25 research outputs found

    Spatial Modulation of Primate Inferotemporal Responses by Eye Position

    Get PDF
    Background: A key aspect of representations for object recognition and scene analysis in the ventral visual stream is the spatial frame of reference, be it a viewer-centered, object-centered, or scene-based coordinate system. Coordinate transforms from retinocentric space to other reference frames involve combining neural visual responses with extraretinal postural information. Methodology/Principal Findings: We examined whether such spatial information is available to anterior inferotemporal (AIT) neurons in the macaque monkey by measuring the effect of eye position on responses to a set of simple 2D shapes. We report, for the first time, a significant eye position effect in over 40 % of recorded neurons with small gaze angle shifts from central fixation. Although eye position modulates responses, it does not change shape selectivity. Conclusions/Significance: These data demonstrate that spatial information is available in AIT for the representation of objects and scenes within a non-retinocentric frame of reference. More generally, the availability of spatial information in AIT calls into questions the classic dichotomy in visual processing that associates object shape processing with ventra

    Visuospatial Integration: Paleoanthropological and Archaeological Perspectives

    Get PDF
    The visuospatial system integrates inner and outer functional processes, organizing spatial, temporal, and social interactions between the brain, body, and environment. These processes involve sensorimotor networks like the eye–hand circuit, which is especially important to primates, given their reliance on vision and touch as primary sensory modalities and the use of the hands in social and environmental interactions. At the same time, visuospatial cognition is intimately connected with memory, self-awareness, and simulation capacity. In the present article, we review issues associated with investigating visuospatial integration in extinct human groups through the use of anatomical and behavioral data gleaned from the paleontological and archaeological records. In modern humans, paleoneurological analyses have demonstrated noticeable and unique morphological changes in the parietal cortex, a region crucial to visuospatial management. Archaeological data provides information on hand–tool interaction, the spatial behavior of past populations, and their interaction with the environment. Visuospatial integration may represent a critical bridge between extended cognition, self-awareness, and social perception. As such, visuospatial functions are relevant to the hypothesis that human evolution is characterized by changes in brain–body–environment interactions and relations, which enhance integration between internal and external cognitive components through neural plasticity and the development of a specialized embodiment capacity. We therefore advocate the investigation of visuospatial functions in past populations through the paleoneurological study of anatomical elements and archaeological analysis of visuospatial behaviors

    The fusiform face area is not sufficient for face recognition: evidence from a patient with dense prosopagnosia and no occipital face area

    Get PDF
    We tested functional activation for faces in patient D.F., who following acquired brain damage has a profound deficit in object recognition based on form (visual form agnosia) and also prosopagnosia that is undocumented to date. Functional imaging demonstrated that like our control observers, D.F. shows significantly more activation when passively viewing face compared to scene images in an area that is consistent with the fusiform face area (FFA) (p < 0.01). Control observers also show occipital face area (OFA) activation; however, whereas D.F.'s lesions appear to overlap the OFA bilaterally. We asked, given that D.F. shows FFA activation for faces, to what extent is she able to recognize faces? D.F. demonstrated a severe impairment in higher level face processing—she could not recognize face identity, gender or emotional expression. In contrast, she performed relatively normally on many face categorization tasks. D.F. can differentiate faces from non-faces given sufficient texture information and processing time, and she can do this is independent of color and illumination information. D.F. can use configural information for categorizing faces when they are presented in an upright but not a sideways orientation and given that she also cannot discriminate half-faces she may rely on a spatially symmetric feature arrangement. Faces appear to be a unique category, which she can classify even when she has no advance knowledge that she will be shown face images. Together, these imaging and behavioral data support the importance of the integrity of a complex network of regions for face identification, including more than just the FFA—in particular the OFA, a region believed to be associated with low-level processing
    corecore