618 research outputs found
Simulating Astro-H Observations of Sloshing Gas Motions in the Cores of Galaxy Clusters
Astro-H will be the first X-ray observatory to employ a high-resolution
microcalorimeter, capable of measuring the shift and width of individual
spectral lines to the precision necessary for estimating the velocity of the
diffuse plasma in galaxy clusters. This new capability is expected to bring
significant progress in understanding the dynamics, and therefore the physics,
of the intracluster medium. However, because this plasma is optically thin,
projection effects will be an important complicating factor in interpreting
future Astro-H measurements. To study these effects in detail, we performed an
analysis of the velocity field from simulations of a galaxy cluster
experiencing gas sloshing, and generated synthetic X-ray spectra, convolved
with model Astro-H Soft X-ray Spectrometer (SXS) responses. We find that the
sloshing motions produce velocity signatures that will be observable by Astro-H
in nearby clusters: the shifting of the line centroid produced by the
fast-moving cold gas underneath the front surface, and line broadening produced
by the smooth variation of this motion along the line of sight. The line shapes
arising from inviscid or strongly viscous simulations are very similar,
indicating that placing constraints on the gas viscosity from these
measurements will be difficult. Our spectroscopic analysis demonstrates that,
for adequate exposures, Astro-H will be able to recover the first two moments
of the velocity distribution of these motions accurately, and in some cases
multiple velocity components may be discerned. The simulations also confirm the
importance of accurate treatment of PSF scattering in the interpretation of
Astro-H/SXS spectra of cluster plasmas.Comment: 27 pages, 20 figures, submitted to the Astrophysical Journa
Using ACIS on the Chandra X-ray Observatory as a particle radiation monitor
The Advanced CCD Imaging Spectrometer (ACIS) is one of two focal-plane
instruments on the Chandra X-ray Observatory. During initial radiation-belt
passes, the exposed ACIS suffered significant radiation damage from trapped
soft protons scattering off the x-ray telescope's mirrors. The primary effect
of this damage was to increase the charge-transfer inefficiency (CTI) of the
ACIS 8 front-illuminated CCDs. Subsequently, the Chandra team implemented
procedures to remove the ACIS from the telescope's focus during high-radiation
events: planned protection during radiation-belt transits; autonomous
protection triggered by an on-board radiation monitor; and manual intervention
based upon assessment of space-weather conditions. However, as Chandra's
multilayer insulation ages, elevated temperatures have reduced the
effectiveness of the on-board radiation monitor for autonomous protection. Here
we investigate using the ACIS CCDs themselves as a radiation monitor. We
explore the 10-year database to evaluate the CCDs' response to particle
radiation and to compare this response with other radiation data and
environment models.Comment: 10 pages, 5 figures. To appear in Proc. SPIE vol. 773
Sacrificial charge and the spectral resolution performance of the Chandra Advanced CCD Imaging Spectrometer
Soon after launch, the Advanced CCD Imaging Spectrometer (ACIS), one of the
focal plane instruments on the Chandra X-ray Observatory, suffered radiation
damage from exposure to soft protons during passages through the Earth's
radiation belts. The ACIS team is continuing to study the properties of the
damage with an emphasis on developing techniques to mitigate charge transfer
inefficiency (CTI) and spectral resolution degradation. A post-facto CTI
corrector has been developed which can effectively recover much of the lost
resolution. Any further improvements in performance will require knowledge of
the location and amount of sacrificial charge - charge deposited along the
readout path of an event which fills electron traps and changes CTI. We report
on efforts by the ACIS Instrument team to characterize which charge traps cause
performance degradation and the properties of the sacrificial charge seen
on-orbit. We also report on attempts to correct X-ray pulseheights for the
presence of sacrificial charge.Comment: 9 pages, 7 figures to be published in Proc. SPIE 485
The Evolution of Cluster Substructure with Redshift
Using Chandra archival data, we quantify the evolution of cluster morphology
with redshift. To quantify cluster morphology, we use the power ratio method
developed by Buote and Tsai (1995). Power ratios are constructed from moments
of the two-dimensional gravitational potential and are, therefore, related to a
cluster's dynamical state. Our sample will include 40 clusters from the Chandra
archive with redshifts between 0.11 and 0.89. These clusters were selected from
two fairly complete flux-limited X-ray surveys (the ROSAT Bright Cluster Sample
and the Einstein Medium Sensitivity Survey), and additional high-redshift
clusters were selected from recent ROSAT flux-limited surveys. Here we present
preliminary results from the first 28 clusters in this sample. Of these, 16
have redshifts below 0.5, and 12 have redshifts above 0.5.Comment: 5 pages, 1 figure, corrected a reference, to appear in the proceeding
of Multiwavelength Cosmology, ed. M. Plioni
Using ACIS on the Chandra X-ray Observatory as a particle radiation monitor II
The Advanced CCD Imaging Spectrometer is an instrument on the Chandra X-ray
Observatory. CCDs are vulnerable to radiation damage, particularly by soft
protons in the radiation belts and solar storms. The Chandra team has
implemented procedures to protect ACIS during high-radiation events including
autonomous protection triggered by an on-board radiation monitor. Elevated
temperatures have reduced the effectiveness of the on-board monitor. The ACIS
team has developed an algorithm which uses data from the CCDs themselves to
detect periods of high radiation and a flight software patch to apply this
algorithm is currently active on-board the instrument. In this paper, we
explore the ACIS response to particle radiation through comparisons to a number
of external measures of the radiation environment. We hope to better understand
the efficiency of the algorithm as a function of the flux and spectrum of the
particles and the time-profile of the radiation event.Comment: 10 pages, 5 figures, to be published in Proc. SPIE 8443, "Space
Telescopes and Instrumentation 2012: Ultraviolet to Gamma Ray
A very deep Chandra observation of Abell 1795: The Cold Front and Cooling Wake
We present a new analysis of very deep Chandra observations of the galaxy
cluster Abell 1795. Utilizing nearly 750 ks of net ACIS imaging, we are able to
resolve the thermodynamic structure of the Intracluster Medium (ICM) on length
scales of ~ 1 kpc near the cool core. We find several previously unresolved
structures, including a high pressure feature to the north of the BCG that
appears to arise from the bulk motion of Abell 1795's cool core. To the south
of the cool core, we find low temperature (~ 3 keV), diffuse ICM gas extending
for distances of ~ 50 kpc spatially coincident with previously identified
filaments of H-alpha emission. Gas at similar temperatures is also detected in
adjacent regions without any H-alpha emission. The X-ray gas coincident with
the H-alpha filament has been measured to be cooling spectroscopically at a
rate of ~ 1 Solar Masses/ yr, consistent with measurements of the star
formation rate in this region as inferred from UV observations, suggesting that
the star formation in this filament as inferred by its H and UV
emission can trace its origin to the rapid cooling of dense, X-ray emitting
gas. The H-alpha filament is not a unique site of cooler ICM, however, as ICM
at similar temperatures and even higher metallicities not cospatial with
H emission is observed just to the west of the H-alpha filament,
suggesting that it may have been uplifted by Abell 1795's central active
galaxy. Further simulations of cool core sloshing and AGN feedback operating in
concert with one another will be necessary to understand how such a dynamic
cool core region may have originated and why the H-alpha emission is so
localized with respect to the cool X-ray gas despite the evidence for a
catastrophic cooling flow.Comment: 14 Pages, 10 Figures, Resubmitted to ApJ after first referee report,
Higher Resolution Figures available upon reques
Chandra X-ray Observations of Galaxies in an Off-Center Region of the Coma Cluster
We have performed a pilot Chandra survey of an off-center region of the Coma
cluster to explore the X-ray properties and Luminosity Function of normal
galaxies. We present results on 13 Chandra-detected galaxies with optical
photometric matches, including four spectroscopically-confirmed Coma-member
galaxies. All seven spectroscopically confirmed giant Coma galaxies in this
field have detections or limits consistent with low X-ray to optical flux
ratios (fX/fR < 10^-3). We do not have sufficient numbers of X-ray detected
galaxies to directly measure the galaxy X-ray Luminosity Function (XLF).
However, since we have a well-measured optical LF, we take this low X-ray to
optical flux ratio for the 7 spectroscopically confirmed galaxies to translate
the optical LF to an XLF. We find good agreement with Finoguenov et al. (2004),
indicating that the X-ray emission per unit optical flux per galaxy is
suppressed in clusters of galaxies, but extends this work to a specific
off-center environment in the Coma cluster. Finally, we report the discovery of
a region of diffuse X-ray flux which might correspond to a small group
interacting with the Coma Intra-Cluster Medium (ICM).Comment: Accepted for publication in the Astrophysical Journa
Detection of x-rays from galaxy groups associated with the gravitationally lensed systems PG 1115+080 and B1422+231
Gravitational lenses that produce multiple images of background quasars can
be an invaluable cosmological tool. Deriving cosmological parameters, however,
requires modeling the potential of the lens itself. It has been estimated that
up to a quarter of lensing galaxies are associated with a group or cluster
which perturbs the gravitational potential. Detection of X-ray emission from
the group or cluster can be used to better model the lens. We report on the
first detection in X-rays of the group associated with the lensing system PG
1115+080 and the first X-ray image of the group associated with the system
B1422+231. We find a temperature and rest-frame luminosity of 0.8 +/- 0.1 keV
and 7 +/- 2 x 10^{42} ergs/s for PG 1115+080 and 1.0 +infty/-0.3 keV and 8 +/-
3 x 10^{42} ergs/s for B1422+231. We compare the spatial and spectral
characteristics of the X-ray emission to the properties of the group galaxies,
to lens models, and to the general properties of groups at lower redshift.Comment: Accepted for publication in ApJ. 17 pages, 5 figures. Minor changes
to tex
- …