8,675 research outputs found

    Parallel structurally-symmetric sparse matrix-vector products on multi-core processors

    Full text link
    We consider the problem of developing an efficient multi-threaded implementation of the matrix-vector multiplication algorithm for sparse matrices with structural symmetry. Matrices are stored using the compressed sparse row-column format (CSRC), designed for profiting from the symmetric non-zero pattern observed in global finite element matrices. Unlike classical compressed storage formats, performing the sparse matrix-vector product using the CSRC requires thread-safe access to the destination vector. To avoid race conditions, we have implemented two partitioning strategies. In the first one, each thread allocates an array for storing its contributions, which are later combined in an accumulation step. We analyze how to perform this accumulation in four different ways. The second strategy employs a coloring algorithm for grouping rows that can be concurrently processed by threads. Our results indicate that, although incurring an increase in the working set size, the former approach leads to the best performance improvements for most matrices.Comment: 17 pages, 17 figures, reviewed related work section, fixed typo

    Does Quantum Cosmology Predict a Constant Dilatonic Field?

    Full text link
    Quantum cosmology may permit to determine the initial conditions of the Universe. In particular, it may select a specific model between many possible classical models. In this work, we study a quantum cosmological model based on the string effective action coupled to matter. The Schutz's formalism is employed in the description of the fluid. A radiation fluid is considered. In this way, a time coordinate may be identified and the Wheeler-DeWitt equation reduces in the minisuperspace to a Schr\"odinger-like equation. It is shown that, under some quite natural assumptions, the expectation values indicate a null axionic field and a constant dilatonic field. At the same time the scale factor exhibits a bounce revealing a singularity-free cosmological model. In some cases, the mininum value of the scale factor can be related to the value of gravitational coupling.Comment: Latex file, 14 page

    Quantum cosmological perfect fluid model and its classical analogue

    Get PDF
    The quantization of gravity coupled to a perfect fluid model leads to a Schr\"odinger-like equation, where the matter variable plays the role of time. The wave function can be determined, in the flat case, for an arbitrary barotropic equation of state p=αρp = \alpha\rho; solutions can also be found for the radiative non-flat case. The wave packets are constructed, from which the expectation value for the scale factor is determined. The quantum scenarios reveal a bouncing Universe, free from singularity. We show that such quantum cosmological perfect fluid models admit a universal classical analogue, represented by the addition, to the ordinary classical model, of a repulsive stiff matter fluid. The meaning of the existence of this universal classical analogue is discussed. The quantum cosmological perfect fluid model is, for a flat spatial section, formally equivalent to a free particle in ordinary quantum mechanics, for any value of α\alpha, while the radiative non-flat case is equivalent to the harmonic oscillator. The repulsive fluid needed to reproduce the quantum results is the same in both cases.Comment: Latex file, 13 page

    Troubles with quantum anistropic cosmological models: Loss of unitarity

    Full text link
    The anisotropic Bianchi I cosmological model coupled with perfect fluid is quantized in the minisuperspace. The perfect fluid is described by using the Schutz formalism which allows to attribute dynamical degrees of freedom to matter. A Schr\"odinger-type equation is obtained where the matter variables play the role of time. However, the signature of the kinetic term is hyperbolic. This Schr\"odinger-like equation is solved and a wave packet is constructed. The norm of the resulting wave function comes out to be time dependent, indicating the loss of unitarity in this model. The loss of unitarity is due to the fact that the effective Hamiltonian is hermitian but not self-adjoint. The expectation value and the bohmian trajectories are evaluated leading to different cosmological scenarios, what is a consequence of the absence of a unitary quantum structure. The consistency of this quantum model is discussed as well as the generality of the absence of unitarity in anisotropic quantum models.Comment: Latex file, 18 pages. To appear in General Relativity and Gravitatio

    Caracterização pedológica e estudos de drenabilidade dos perímetros de irrigação Brígida, Caraíbas e Apolônio Sales, Estado de Pernambuco.

    Get PDF
    A agricultura irrigada tem sido explorada de forma intensiva em alguns pólos da Região Semi-Árida brasileira. Nessa expansão, muitos solos arenosos têm sido incorporados ao processo produtivo recentemente. Esse avanço infelizmente tem sido acompanhado de um manejo incorreto da irrigação, gerando desperdício de água e impactando a rentabilidade dos perímetros irrigados. Dessa forma, criou-se a necessidade de melhores estudos, preferencialmente desenvolvidos diretamente no campo, para ampliar o entendimento das relações solo-água, visando a adoção de práticas corretas na condução dos lotes irrigados. Este trabalho objetiva estudar essas interações de forma comparativa, buscando o melhor entendimento do manejo desses solos sob irrigação, contribuindo assim para o aumento da produtividade agrícola com a racionalização dos recursos naturais.bitstream/item/71717/1/bpd116-2007-caract-pedologica.pd
    corecore