8,410 research outputs found

    Does Quantum Cosmology Predict a Constant Dilatonic Field?

    Full text link
    Quantum cosmology may permit to determine the initial conditions of the Universe. In particular, it may select a specific model between many possible classical models. In this work, we study a quantum cosmological model based on the string effective action coupled to matter. The Schutz's formalism is employed in the description of the fluid. A radiation fluid is considered. In this way, a time coordinate may be identified and the Wheeler-DeWitt equation reduces in the minisuperspace to a Schr\"odinger-like equation. It is shown that, under some quite natural assumptions, the expectation values indicate a null axionic field and a constant dilatonic field. At the same time the scale factor exhibits a bounce revealing a singularity-free cosmological model. In some cases, the mininum value of the scale factor can be related to the value of gravitational coupling.Comment: Latex file, 14 page

    Qualitative analysis of a scalar-tensor theory with exponential potential

    Get PDF
    A qualitative analysis of a scalar-tensor cosmological model, with an exponential potential for the scalar field, is performed. The phase diagram for the flat case is constructed. It is shown that solutions with an initial and final inflationary behaviour appear. The conditions for which the scenario favored by supernova type Ia observations becomes an attractor in the space of the solutions are established.Comment: Latex file, 9 pages, 1 figur

    MOA-2011-BLG-293Lb: First Microlensing Planet possibly in the Habitable Zone

    Full text link
    We used Keck adaptive optics observations to identify the first planet discovered by microlensing to lie in or near the habitable zone, i.e., at projected separation r=1.1±0.1r_\perp=1.1\pm 0.1\,AU from its ML=0.86±0.06MM_{L}=0.86\pm 0.06\,M_\odot host, being the highest microlensing mass definitely identified. The planet has a mass mp=4.8±0.3MJupm_p = 4.8\pm 0.3\,M_{\rm Jup}, and could in principle have habitable moons. This is also the first planet to be identified as being in the Galactic bulge with good confidence: DL=7.72±0.44D_L=7.72\pm 0.44 kpc. The planet/host masses and distance were previously not known, but only estimated using Bayesian priors based on a Galactic model (Yee et al. 2012). These estimates had suggested that the planet might be a super-Jupiter orbiting an M dwarf, a very rare class of planets. We obtained high-resolution JHKJHK images using Keck adaptive optics to detect the lens and so test this hypothesis. We clearly detect light from a G dwarf at the position of the event, and exclude all interpretations other than that this is the lens with high confidence (95%), using a new astrometric technique. The calibrated magnitude of the planet host star is HL=19.16±0.13H_{L}=19.16\pm 0.13. We infer the following probabilities for the three possible orbital configurations of the gas giant planet: 53% to be in the habitable zone, 35% to be near the habitable zone, and 12% to be beyond the snow line, depending on the atmospherical conditions and the uncertainties on the semimajor axis.Comment: Accepted by ApJ, 21 pages, 4 figure
    corecore