4,287 research outputs found

    Spatial transformations of diffusion tensor magnetic resonance images

    Get PDF
    The authors address the problem of applying spatial transformations (or “image warps”) to diffusion tensor magnetic resonance images. The orientational information that these images contain must be handled appropriately when they are transformed spatially during image registration. The authors present solutions for global transformations of three-dimensional images up to 12-parameter affine complexity and indicate how their methods can be extended for higher order transformations. Several approaches are presented and tested using synthetic data. One method, the preservation of principal direction algorithm, which takes into account shearing, stretching and rigid rotation, is shown to be the most effective. Additional registration experiments are performed on human brain data obtained from a single subject, whose head was imaged in three different orientations within the scanner. All of the authors' methods improve the consistency between registered and target images over naive warping algorithms

    Single- and Multiple-Shell Uniform Sampling Schemes for Diffusion MRI Using Spherical Codes

    Get PDF
    In diffusion MRI (dMRI), a good sampling scheme is important for efficient acquisition and robust reconstruction. Diffusion weighted signal is normally acquired on single or multiple shells in q-space. Signal samples are typically distributed uniformly on different shells to make them invariant to the orientation of structures within tissue, or the laboratory coordinate frame. The Electrostatic Energy Minimization (EEM) method, originally proposed for single shell sampling scheme in dMRI, was recently generalized to multi-shell schemes, called Generalized EEM (GEEM). GEEM has been successfully used in the Human Connectome Project (HCP). However, EEM does not directly address the goal of optimal sampling, i.e., achieving large angular separation between sampling points. In this paper, we propose a more natural formulation, called Spherical Code (SC), to directly maximize the minimal angle between different samples in single or multiple shells. We consider not only continuous problems to design single or multiple shell sampling schemes, but also discrete problems to uniformly extract sub-sampled schemes from an existing single or multiple shell scheme, and to order samples in an existing scheme. We propose five algorithms to solve the above problems, including an incremental SC (ISC), a sophisticated greedy algorithm called Iterative Maximum Overlap Construction (IMOC), an 1-Opt greedy method, a Mixed Integer Linear Programming (MILP) method, and a Constrained Non-Linear Optimization (CNLO) method. To our knowledge, this is the first work to use the SC formulation for single or multiple shell sampling schemes in dMRI. Experimental results indicate that SC methods obtain larger angular separation and better rotational invariance than the state-of-the-art EEM and GEEM. The related codes and a tutorial have been released in DMRITool.Comment: Accepted by IEEE transactions on Medical Imaging. Codes have been released in dmritool https://diffusionmritool.github.io/tutorial_qspacesampling.htm

    Exploring Local White Matter Geometric Structure in diffusion MRI Using Director Field Analysis

    Get PDF
    International audienceIn this abstract, inspired by microscopic theoretical treatment of phases in liquid crystals, we introduce a novel mathematical framework, called Director Field Analysis (DFA), to study local geometric structural information of white matter. DFA extracts some meaningful scalar indices related with the degree of orientational alignment, dispersion, and orientational distortion, from the Orientation Distribution Function (ODF) field reconstructed by Diffusion Tensor Imaging (DTI) or High Angular Resolution Diffusion Imaging (HARDI)

    Random noise in Diffusion Tensor Imaging, its Destructive Impact and Some Corrections

    Get PDF
    The empirical origin of random noise is described, its influence on DTI variables is illustrated by a review of numerical and in vivo studies supplemented by new simulations investigating high noise levels. A stochastic model of noise propagation is presented to structure noise impact in DTI. Finally, basics of voxelwise and spatial denoising procedures are presented. Recent denoising procedures are reviewed and consequences of the stochastic model for convenient denoising strategies are discussed

    Director Field Analysis to Explore Local White Matter Geometric Structure in diffusion MRI

    Get PDF
    International audienceIn diffusion MRI, a tensor field or a spherical function field, e.g., an Orientation Distribution Function (ODF) field, are estimated from measured diffusion weighted images. In this paper, inspired by microscopic theoretical treatment of phases in liquid crystals, we introduce a novel mathematical framework, called Director Field Analysis (DFA), to study local geometric structural information of white matter from the estimated tensor field or spherical function field. 1) We propose Orientational Order (OO) and Orientational Dispersion (OD) indices to describe the degree of alignment and dispersion of a spherical function in each voxel; 2) We estimate a local orthogonal coordinate frame in each voxel with anisotropic diffusion; 3) Finally, we define three indices to describe three types of orientational distortion (splay, bend, and twist) in a local spatial neighborhood, and a total distortion index to describe distortions of all three types. To our knowledge, this is the first work to quantitatively describe orientational distortion (splay, bend, and twist) in diffusion MRI. The proposed scalar indices are useful to detect local geometric changes of white matter for voxel-based or tract-based analysis in both DTI and HARDI acquisitions

    On Quantifying Local Geometric Structures of Fiber Tracts

    Get PDF
    International audienceIn diffusion MRI, fiber tracts, represented by densely distributed 3D curves, can be estimated from diffusion weighted images using tractography. The spatial geometric structure of white matter fiber tracts is known to be complex in human brain, but it carries intrinsic information of human brain. In this paper, inspired by studies of liquid crystals, we propose tract-based director field analysis (tDFA) with total six rotationally invariant scalar indices to quantify local geometric structures of fiber tracts. The contributions of tDFA include: 1) We propose orientational order (OO) and orientational dispersion (OD) indices to quantify the degree of alignment and dispersion of fiber tracts; 2) We define the local orthogonal frame for a set of unoriented curves, which is proved to be a generalization of the Frenet frame defined for a single oriented curve; 3) With the local orthogonal frame, we propose splay, bend, and twist indices to quantify three types of orientational distortion of local fiber tracts, and a total distortion index to describe distortions of all three types. The proposed tDFA for fiber tracts is a generalization of the voxel-based DFA (vDFA) which was recently proposed for a spherical function field (i.e., an ODF field). To our knowledge, this is the first work to quantify orientational distortion (splay, bend, twist, and total distortion) of fiber tracts. Experiments show that the proposed scalar indices are useful descriptors of local geometric structures to visualize and analyze fiber tracts

    A meta-science for a global bioethics and biomedicine

    Get PDF
    Background: As suggested by Shook and Giordano, understanding and therefore addressing the urgent international governance issues around globalizing bio-medical/technology research and applications is limited by the perception of the underlying science. Methods: A philosophical methodology is used, based on novel and classical philosophical reflection upon existent literature, clinical wisdoms and narrative theory to discover a meta-science and telos of humankind for the development of a relevant and defendable global biomedical bioethics. Results: In this article, through pondering an integrative systems approach, I propose a biomedical model that may provide Western biomedicine with leadership and interesting insight into the unity beyond the artificial boundaries of its traditional divisions and the limit between physiological and pathological situations (health and disease). A unified biomedicine, as scientific foundation, might then provide the basis for dissolution of similar reflected boundaries within bioethics. A principled and communitarian cosmopolitan bioethics may then be synonymous with a recently proposed principled and communitarian cosmopolitan neuroethics based on a novel objective meta-ethics. In an attempt to help facilitate equal and inclusive participation in inter-, multi-, and transdisciplinary intercultural discourse regarding the aforementioned international governance issues, I offer: (1) a meta-science derived through considering the general behaviour of activity, plasticity and balance in biology and; (2) a novel thought framework to encourage and enhance the ability for self-evaluation, self-criticism, and self-revision aimed at broadening perspective, as well as acknowledging and responding to the strengths and limitations of extant knowledge. Conclusions: Through classical philosophical reflection, I evolve a theory of medicine to discover a telos of humankind which in turn provides an ‘internal’ moral grounding for a proposed global biomedical bioethics
    corecore