Director Field Analysis to Explore Local White Matter Geometric Structure in diffusion MRI

Abstract

International audienceIn diffusion MRI, a tensor field or a spherical function field, e.g., an Orientation Distribution Function (ODF) field, are estimated from measured diffusion weighted images. In this paper, inspired by microscopic theoretical treatment of phases in liquid crystals, we introduce a novel mathematical framework, called Director Field Analysis (DFA), to study local geometric structural information of white matter from the estimated tensor field or spherical function field. 1) We propose Orientational Order (OO) and Orientational Dispersion (OD) indices to describe the degree of alignment and dispersion of a spherical function in each voxel; 2) We estimate a local orthogonal coordinate frame in each voxel with anisotropic diffusion; 3) Finally, we define three indices to describe three types of orientational distortion (splay, bend, and twist) in a local spatial neighborhood, and a total distortion index to describe distortions of all three types. To our knowledge, this is the first work to quantitatively describe orientational distortion (splay, bend, and twist) in diffusion MRI. The proposed scalar indices are useful to detect local geometric changes of white matter for voxel-based or tract-based analysis in both DTI and HARDI acquisitions

    Similar works