46 research outputs found
Origin of strange metallic phase in cuprate superconductors
The origin of strange metallic phase is shown to exist due to these two
conditions---(i) the electrons are strongly interacting such that there are no
band and Mott-Hubbard gaps, and (ii) the electronic energy levels are crossed
in such a way that there is an electronic energy gap between two energy levels
associated to two different wave functions. The theory is also exploited to
explain (i) the upward- and downward-shifts in the -linear resistivity
curves, and (ii) the spectral weight transfer observed in the soft X-ray
absorption spectroscopic measurements of the La-Sr-Cu-O Mott insulator.Comment: To be published in J. Supercond. Nov. Mag
Dual Vortex Theory of Strongly Interacting Electrons: Non-Fermi Liquid to the (Hard) Core
As discovered in the quantum Hall effect, a very effective way for
strongly-repulsive electrons to minimize their potential energy is to aquire
non-zero relative angular momentum. We pursue this mechanism for interacting
two-dimensional electrons in zero magnetic field, by employing a representation
of the electrons as composite bosons interacting with a Chern-Simons gauge
field. This enables us to construct a dual description in which the fundamental
constituents are vortices in the auxiliary boson fields. The resulting
formalism embraces a cornucopia of possible phases. Remarkably,
superconductivity is a generic feature, while the Fermi liquid is not --
prompting us to conjecture that such a state may not be possible when the
interactions are sufficiently strong. Many aspects of our earlier discussions
of the nodal liquid and spin-charge separation find surprising incarnations in
this new framework.Comment: Modified dicussion of the hard-core model, correcting several
mistake
Spin Ordering and Quasiparticles in Spin Triplet Superconducting Liquids
Spin ordering and its effect on low energy quasiparticles in a p-wave
superconducting liquid are investigated. We show that there is a new 2D p-wave
superconducting liquid where the ground state is rotation invariant. In quantum
spin disordered liquids, the low energy quasiparticles are bound states of the
bare Bogolubov- De Gennes ({\em BdeG}) quasiparticles and zero energy
skyrmions, which are charge neutral bosons at the low energy limit. Further
more, spin collective excitations are fractionalized ones carrying a half spin
and obeying fermionic statistics. In thermally spin disordered limits, the
quasi-particles are bound states of bare {\em BdeG} quasi-particles. The
latter situation can be realized in some layered p-wave superconductors where
the spin-orbit coupling is weak.Comment: 5 pages, no figures; published versio
Statistical mechanics of the random K-SAT model
The Random K-Satisfiability Problem, consisting in verifying the existence of
an assignment of N Boolean variables that satisfy a set of M=alpha N random
logical clauses containing K variables each, is studied using the replica
symmetric framework of diluted disordered systems. We present an exact
iterative scheme for the replica symmetric functional order parameter together
for the different cases of interest K=2, K>= 3 and K>>1. The calculation of the
number of solutions, which allowed us [Phys. Rev. Lett. 76, 3881 (1996)] to
predict a first order jump at the threshold where the Boolean expressions
become unsatisfiable with probability one, is thoroughly displayed. In the case
K=2, the (rigorously known) critical value (alpha=1) of the number of clauses
per Boolean variable is recovered while for K>=3 we show that the system
exhibits a replica symmetry breaking transition. The annealed approximation is
proven to be exact for large K.Comment: 34 pages + 1 table + 8 fig., submitted to Phys. Rev. E, new section
added and references update
Fractionalization patterns in strongly correlated electron systems: Spin-charge separation and beyond
We discuss possible patterns of electron fractionalization in strongly
interacting electron systems. A popular possibility is one in which the charge
of the electron has been liberated from its Fermi statistics. Such a
fractionalized phase contains in it the seed of superconductivity. Another
possibility occurs when the spin of the electron, rather than its charge, is
liberated from its Fermi statistics. Such a phase contains in it the seed of
magnetism, rather than superconductivity. We consider models in which both of
these phases occur and study possible phase transitions between them. We
describe other fractionalized phases, distinct from these, in which fractions
of the electron themselves fractionalize, and discuss the topological
characterization of such phases. These ideas are illustrated with specific
models of p-wave superconductors, Kondo lattices, and coexistence between
d-wave superconductivity and antiferromagnetism.Comment: 28 pages, 11 fig
Competing Orders in Coupled Luttinger Liquids
We consider the problem of two coupled Luttinger liquids both at half filling
and at low doping levels, to investigate the problem of competing orders in
quasi-one-dimensional strongly correlated systems. We use bosonization and
renormalization group equations to investigate the phase diagrams, to determine
the allowed phases and to establish approximate boundaries among them. Because
of the chiral translation and reflection symmetry in the charge mode away from
half filling, orders of charge density wave (CDW) and spin-Peierls (SP)
diagonal current (DC) and -density wave (DDW) form two doublets and thus can
be at most quasi-long range ordered. At half-filling, umklapp terms break this
symmetry down to a discrete group and thus Ising-type ordered phases appear as
a result of spontaneous breaking of the residual symmetries. Quantum disordered
Haldane phases are also found, with finite amplitudes of pairing orders and
triplet counterparts of CDW, SP, DC and DDW. Relations with recent numerical
results and implications to similar problems in two dimensions are discussed.Comment: 16 pages, 5 figures, 4 tables. Revised manuscript; a misprint in Eq.
B3 has been corrected. The paper is already in print in PR
Potential use of Acetylcholinesterase from Osteochilus hasselti in Monitoring Heavy Metal Pollution in Malaysia River
River pollution gave significant effects by declining the quality of freshwater sources, and cause a negative impact on the aquatic habitat and nearby aquaculture sector. Scheduled river monitoring was implemented to determine and investigate the pollution source in order to minimize the number of waste release into the river. Preliminary screening using biosensor tool considered as an effective method where capable to reduce the cost of implementation, easy to handle as well as rapid analysis. The potential use of acetylcholinesterase (AChE) purified from the brain tissue of Osteochilus hasselti as a biosensor tool for heavy metal pollution was investigated. Prior to the study, several water samples were collected from the selected state in Malaysia; Derhaka River (Penang), Perak River (Perak), Kuyuh River (Selangor), Melaka River (Malacca), Peta Waterfall (Endau-Rompin National Park, Johor), followed by filtered then brought to the laboratory immediately. AChE was extracted from the brain tissue of O. hasselti followed by affinity purification using procainamide-based chromatography. AChE was tested by incubated separately with the water samples. Based on the semi-quantitative assessment, all the sample from Derhaka River show higher inhibition towards AChE activity compared to the other river. DR01 capable of lowering almost half of the AChE activity to 56.8±2.8 % followed by DR03 (67.96 %) and DR02 (76.74%). Both Melaka river samples; MR1 and MR2 capable to inhibit AChE more than 10% while MR03 around 4 %. Sample from Kuyuh river; KR01, KR02 and KR03 significantly inhibiting the enzyme activity more than 10%. PR (PR01, PR02 and PR03) slightly affecting the AChE activity around 3 to 5 %. However, all the sample from Endau-Rompin National Park considered as unaffected. Secondary screening was done on each river samples using ICP-OEM for quantitative analysis. This can conclude that the inhibition level of AChE corresponds to the concentration of metal ion. From the study proves that O. hasselti AChE works as an alternative source of biosensor in monitoring the environmental pollution
Stripes and holes in a two-dimensional model of spinless fermions and hardcore bosons
We consider a Hubbard-like model of strongly-interacting spinless fermions
and hardcore bosons on a square lattice, such that nearest neighbor occupation
is forbidden. Stripes (lines of holes across the lattice forming antiphase
walls between ordered domains) are a favorable way to dope this system below
half-filling. The problem of a single stripe can be mapped to a spin-1/2 chain,
which allows understanding of its elementary excitations and calculation of the
stripe's effective mass for transverse vibrations. Using Lanczos exact
diagonalization, we investigate the excitation gap and dispersion of a hole on
a stripe, and the interaction of two holes. We also study the interaction of
two, three, and four stripes, finding that they repel, and the interaction
energy decays with stripe separation as if they are hardcore particles moving
in one (transverse) direction. To determine the stability of an array of
stripes against phase separation into particle-rich phase and hole-rich liquid,
we evaluate the liquid's equation of state, finding the stripe-array is not
stable for bosons but is possibly stable for fermions.Comment: 24 pages, 18 figure
Active Brownian Particles. From Individual to Collective Stochastic Dynamics
We review theoretical models of individual motility as well as collective
dynamics and pattern formation of active particles. We focus on simple models
of active dynamics with a particular emphasis on nonlinear and stochastic
dynamics of such self-propelled entities in the framework of statistical
mechanics. Examples of such active units in complex physico-chemical and
biological systems are chemically powered nano-rods, localized patterns in
reaction-diffusion system, motile cells or macroscopic animals. Based on the
description of individual motion of point-like active particles by stochastic
differential equations, we discuss different velocity-dependent friction
functions, the impact of various types of fluctuations and calculate
characteristic observables such as stationary velocity distributions or
diffusion coefficients. Finally, we consider not only the free and confined
individual active dynamics but also different types of interaction between
active particles. The resulting collective dynamical behavior of large
assemblies and aggregates of active units is discussed and an overview over
some recent results on spatiotemporal pattern formation in such systems is
given.Comment: 161 pages, Review, Eur Phys J Special-Topics, accepte
Spin-Charge Separation in the Model: Magnetic and Transport Anomalies
A real spin-charge separation scheme is found based on a saddle-point state
of the model. In the one-dimensional (1D) case, such a saddle-point
reproduces the correct asymptotic correlations at the strong-coupling
fixed-point of the model. In the two-dimensional (2D) case, the transverse
gauge field confining spinon and holon is shown to be gapped at {\em finite
doping} so that a spin-charge deconfinement is obtained for its first time in
2D. The gap in the gauge fluctuation disappears at half-filling limit, where a
long-range antiferromagnetic order is recovered at zero temperature and spinons
become confined. The most interesting features of spin dynamics and transport
are exhibited at finite doping where exotic {\em residual} couplings between
spin and charge degrees of freedom lead to systematic anomalies with regard to
a Fermi-liquid system. In spin dynamics, a commensurate antiferromagnetic
fluctuation with a small, doping-dependent energy scale is found, which is
characterized in momentum space by a Gaussian peak at (, ) with
a doping-dependent width (, is the doping
concentration). This commensurate magnetic fluctuation contributes a
non-Korringa behavior for the NMR spin-lattice relaxation rate. There also
exits a characteristic temperature scale below which a pseudogap behavior
appears in the spin dynamics. Furthermore, an incommensurate magnetic
fluctuation is also obtained at a {\em finite} energy regime. In transport, a
strong short-range phase interference leads to an effective holon Lagrangian
which can give rise to a series of interesting phenomena including linear-
resistivity and Hall-angle. We discuss the striking similarities of these
theoretical features with those found in the high- cuprates and give aComment: 70 pages, RevTex, hard copies of 7 figures available upon request;
minor revisions in the text and references have been made; To be published in
July 1 issue of Phys. Rev. B52, (1995