6,962 research outputs found

    In-flight damping measurement

    Get PDF
    A new testing technique is described which can be applied in determining the damping coefficient of the critical vibration modes of an airplane in flight. The damping coefficient can be determined in several different ways from the same data using different features of a modified response curve which implies the possibility of checking one value against the other. The method introduces the effect of sweep rate in the driving system. This effect on the frequency response curve of the critical vibration mode and its various characteristics are used in the determination of damping coefficient. A theoretical examination is made of these characteristics for single degree of freedom systems

    Reentrant glass transition in a colloid-polymer mixture with depletion attractions

    Full text link
    Performing light scattering experiments we show that introducing short-ranged attraction to a colloidal suspension of nearly hard spheres by addition of free polymer produces new glass transition phenomena. We observe a dramatic acceleration of the density fluctuations amounting to the melting of a colloidal glass. Increasing the strength of the attractions the system freezes into another nonergodic state sharing some qualitative features with gel states occurring at lower colloid packing fractions. This reentrant glass transition is in qualitative agreement with recent theoretical predictions.Comment: 14 pages, 3 figure

    Dynamical typicality of quantum expectation values

    Full text link
    We show that the vast majority of all pure states featuring a common expectation value of some generic observable at a given time will yield very similar expectation values of the same observable at any later time. This is meant to apply to Schroedinger type dynamics in high dimensional Hilbert spaces. As a consequence individual dynamics of expectation values are then typically well described by the ensemble average. Our approach is based on the Hilbert space average method. We support the analytical investigations with numerics obtained by exact diagonalization of the full time-dependent Schroedinger equation for some pertinent, abstract Hamiltonian model. Furthermore, we discuss the implications on the applicability of projection operator methods with respect to initial states, as well as on irreversibility in general.Comment: 4 pages, 1 figure, accepted for publication in Phys. Rev. Let

    An algorithm for calculating the Lorentz angle in silicon detectors

    Full text link
    Future experiments will use silicon sensors in the harsh radiation environment of the LHC (Large Hadron Collider) and high magnetic fields. The drift direction of the charge carriers is affected by the Lorentz force due to the high magnetic field. Also the resulting radiation damage changes the properties of the drift. In this paper measurements of the Lorentz angle of electrons and holes before and after irradiation are reviewed and compared with a simple algorithm to compute the Lorentz angle.Comment: 13 pages, 7 figures, final version accepted by NIMA. Mainly clarifications included and slightly shortene

    The hydrogen atom in an electric field: Closed-orbit theory with bifurcating orbits

    Full text link
    Closed-orbit theory provides a general approach to the semiclassical description of photo-absorption spectra of arbitrary atoms in external fields, the simplest of which is the hydrogen atom in an electric field. Yet, despite its apparent simplicity, a semiclassical quantization of this system by means of closed-orbit theory has not been achieved so far. It is the aim of this paper to close that gap. We first present a detailed analytic study of the closed classical orbits and their bifurcations. We then derive a simple form of the uniform semiclassical approximation for the bifurcations that is suitable for an inclusion into a closed-orbit summation. By means of a generalized version of the semiclassical quantization by harmonic inversion, we succeed in calculating high-quality semiclassical spectra for the hydrogen atom in an electric field

    Dvoretzky type theorems for multivariate polynomials and sections of convex bodies

    Full text link
    In this paper we prove the Gromov--Milman conjecture (the Dvoretzky type theorem) for homogeneous polynomials on Rn\mathbb R^n, and improve bounds on the number n(d,k)n(d,k) in the analogous conjecture for odd degrees dd (this case is known as the Birch theorem) and complex polynomials. We also consider a stronger conjecture on the homogeneous polynomial fields in the canonical bundle over real and complex Grassmannians. This conjecture is much stronger and false in general, but it is proved in the cases of d=2d=2 (for kk's of certain type), odd dd, and the complex Grassmannian (for odd and even dd and any kk). Corollaries for the John ellipsoid of projections or sections of a convex body are deduced from the case d=2d=2 of the polynomial field conjecture

    Resistance Thermometer for Heat Transfer Measurements in a Shock Tube

    Get PDF
    This report describes a method for the application of the well-known principle of the resistance thermometer to the problem of measuring surface temperatures and heat transfer rates under highly transient conditions, such as are experienced in a shock tube. By using a thin platinum film sputtered on glass, a resistance thermometer gage is obtained which has a response lag of less than 1 µ sec, a linear output of 2-3 mv/°c, repeatability and durability. The gage preparation, including the sputtering technique, calibration method, and response characteristics are discussed, and some measurements of surface temperatures and heat transfer rates on models in the shock tube are presented in order to illustrate the performance that can be expected from this instrument

    Constraints on B--->pi,K transition form factors from exclusive semileptonic D-meson decays

    Full text link
    According to the heavy-quark flavour symmetry, the B→π,KB\to \pi, K transition form factors could be related to the corresponding ones of D-meson decays near the zero recoil point. With the recent precisely measured exclusive semileptonic decays D→πℓνD \to \pi \ell \nu and D→KℓνD\to K \ell \nu, we perform a phenomenological study of B→π,KB \to \pi, K transition form factors based on this symmetry. Using BK, BZ and Series Expansion parameterizations of the form factor slope, we extrapolate B→π,KB \to \pi, K transition form factors from qmax2q^{2}_{max} to q2=0q^{2}=0. It is found that, although being consistent with each other within error bars, the central values of our results for B→π,KB \to \pi, K form factors at q2=0q^2=0, f+B→π,K(0)f_+^{B\to \pi, K}(0), are much smaller than predictions of the QCD light-cone sum rules, but are in good agreements with the ones extracted from hadronic B-meson decays within the SCET framework. Moreover, smaller form factors are also favored by the QCD factorization approach for hadronic B-meson decays.Comment: 19 pages, no figure, 5 table

    The Transition State in a Noisy Environment

    Get PDF
    Transition State Theory overestimates reaction rates in solution because conventional dividing surfaces between reagents and products are crossed many times by the same reactive trajectory. We describe a recipe for constructing a time-dependent dividing surface free of such recrossings in the presence of noise. The no-recrossing limit of Transition State Theory thus becomes generally available for the description of reactions in a fluctuating environment
    • …
    corecore