439 research outputs found

    Material heterogeneity or stress concentration: the thermoelastic response from woven composite materials subjected to cyclic fatigue

    No full text
    A study of the growth of fatigue damage in 2 x 2 twill woven composite materials, subjected to cyclic tensile loading are described. Thermoelastic stress analysis (TSA) is used to monitor the stress field. As a result of the damage, a net reduction in the thermoelastic signal is observed. Laminates are found to be more resistant to fatigue

    Development of thermoelastic stress analysis as a non-destructive evaluation tool

    No full text
    A modified methodology is proposed in which only a single transient load is used for the TSA measurement. Specimens with different damage severities are tested and it is shown that the modified TSA method has the potential to be applied in the field as a non-destructive evaluation tool

    Thermoelastic stress and damage analysis using transient loading

    No full text
    Thermoelastic stress analysis (TSA) is often regarded as a laboratory based technique due to its requirement for a cyclic load. A modified methodology is proposed in which only a single transient load is used for the TSA measurement. Two methods of imparting the transient load are validated against calculations and the conventional TSA approach. Specimens with different damage severities are tested and it is shown that the modified TSA method has the potential to be applied in the field as a non-destructive evaluation too

    Experimental evolution of a sexually selected display in yeast

    Get PDF
    The fundamental principle underlying sexual selection theory is that an allele conferring an advantage in the competition for mates will spread through a population. Remarkably, this has never been demonstrated empirically. We have developed an experimental system using yeast for testing genetic models of sexual selection. Yeast signal to potential partners by producing an attractive pheromone; stronger signallers are preferred as mates. We tested the effect of high and low levels of sexual selection on the evolution of a gene determining the strength of this signal. Under high sexual selection, an allele encoding a stronger signal was able to invade a population of weak signallers, and we observed a corresponding increase in the amount of pheromone produced. By contrast, the strong signalling allele failed to invade under low sexual selection. Our results demonstrate, for the first time, the spread of a sexually selected allele through a population, confirming the central assumption of sexual selection theory. Our yeast system is a powerful tool for investigating the genetics of sexual selection

    Blood parasites in endangered wildlife - Trypanosomes discovered during a survey of haemoprotozoa from the Tasmanian devil

    Get PDF
    The impact of emerging infectious diseases is increasingly recognised as a major threat to wildlife. Wild populations of the endangered Tasmanian devil, Sarcophilus harrisii, are experiencing devastating losses from a novel transmissible cancer, devil facial tumour disease (DFTD); however, despite the rapid decline of this species, there is currently no information on the presence of haemoprotozoan parasites. In the present study, 95 Tasmanian devil blood samples were collected from four populations in Tasmania, Australia, which underwent molecular screening to detect four major groups of haemoprotozoa: (i) trypanosomes, (ii) piroplasms, (iii) Hepatozoon, and (iv) haemosporidia. Sequence results revealed Trypanosoma infections in 32/95 individuals. Trypanosoma copemani was identified in 10 Tasmanian devils from three sites and a second Trypanosoma sp. was identified in 22 individuals that were grouped within the poorly described T. cyclops clade. A single blood sample was positive for Babesia sp., which most closely matched Babesia lohae. No other blood protozoan parasite DNA was detected. This study provides the first insight into haemoprotozoa from the Tasmanian devil and the first identification of Trypanosoma and Babesia in this carnivorous marsupial

    Thermoelastic Investigation of Damage Evolution in Small Stainless Steel Pipework

    Full text link
    This paper describes work on damage studies in small cold worked pipe sections. The effect of material heat treatment on the sensitivity of the thermoelastic constant to exposure to plastic strain is assessed. It is shown that strain hardening plays an important role in modifying the thermoelastic constant. X-ray computed tomography has been use to assess the geometry of the deformed cross-section of pipe and to identify the presence of damage. Finally the potential of thermoelastic stress analysis for damage assessment in the pipe work is established

    The Complete Nucleotide Sequence of the Coffee (Coffea Arabica L.) Chloroplast Genome: Organization and Implications for Biotechnology and Phylogenetic Relationships Amongst Angiosperms

    Get PDF
    The chloroplast genome sequence of Coffea arabica L., the first sequenced member of the fourth largest family of angiosperms, Rubiaceae, is reported. The genome is 155 189 bp in length, including a pair of inverted repeats of 25 943 bp. Of the 130 genes present, 112 are distinct and 18 are duplicated in the inverted repeat. The coding region comprises 79 protein genes, 29 transfer RNA genes, four ribosomal RNA genes and 18 genes containing introns (three with three exons). Repeat analysis revealed five direct and three inverted repeats of 30 bp or longer with a sequence identity of 90% or more. Comparisons of the coffee chloroplast genome with sequenced genomes of the closely related family Solanaceae indicated that coffee has a portion of rps19 duplicated in the inverted repeat and an intact copy of infA. Furthermore, whole-genome comparisons identified large indels (\u3e 500 bp) in several intergenic spacer regions and introns in the Solanaceae, including trnE (UUC)–trnT (GGU) spacer, ycf4–cemA spacer, trnI (GAU) intron and rrn5–trnR (ACG) spacer. Phylogenetic analyses based on the DNA sequences of 61 protein-coding genes for 35 taxa, performed using both maximum parsimony and maximum likelihood methods, strongly supported the monophyly of several major clades of angiosperms, including monocots, eudicots, rosids, asterids, eurosids II, and euasterids I and II. Coffea (Rubiaceae, Gentianales) is only the second order sampled from the euasterid I clade. The availability of the complete chloroplast genome of coffee provides regulatory and intergenic spacer sequences for utilization in chloroplast genetic engineering to improve this important crop
    • 

    corecore