626 research outputs found

    A hybrid method for determining particle masses at the Large Hadron Collider with fully identified cascade decays

    Full text link
    A new technique for improving the precision of measurements of SUSY particle masses at the LHC is introduced. The technique involves kinematic fitting of events with two fully identified decay chains. We incorporate both event ETmiss constraints and independent constraints provided by kinematic end-points in experiment invariant mass distributions of SUSY decay products. Incorporation of the event specific information maximises the information used in the fit and is shown to reduce the mass measurement uncertainites by ~30% compared to conventional fitting of experiment end-point constraints for the SPS1a benchmark model.Comment: 10 pages, 2 .eps figures, JHEP3 styl

    Supersymmetric particle mass measurement with invariant mass correlations

    Full text link
    The kinematic end-point technique for measuring the masses of supersymmetric particles in R-Parity conserving models at hadron colliders is re-examined with a focus on exploiting additional constraints arising from correlations in invariant mass observables. The use of such correlations is shown to potentially resolve the ambiguity in the interpretation of quark+lepton end-points and enable discrimination between sequential two-body and three-body lepton-producing decays. The use of these techniques is shown to improve the SUSY particle mass measurement precision for the SPS1a benchmark model by at least 20-30% compared to the conventional end-point technique.Comment: 29 pages, 23 .eps figures, JHEP3 style; v2 adds some references and small clarifications to text; v3 adds some more clarifications to the tex

    Mass Determination in SUSY-like Events with Missing Energy

    Full text link
    We describe a kinematic method which is capable of determining the overall mass scale in SUSY-like events at a hadron collider with two missing (dark matter) particles. We focus on the kinematic topology in which a pair of identical particles is produced with each decaying to two leptons and an invisible particle (schematically, ppYY+jetspp\to YY+jets followed by each YY decaying via YXNY\to \ell X\to \ell\ell'N where NN is invisible). This topology arises in many SUSY processes such as squark and gluino production and decay, not to mention t\anti t di-lepton decays. In the example where the final state leptons are all muons, our errors on the masses of the particles YY, XX and NN in the decay chain range from 4 GeV for 2000 events after cuts to 13 GeV for 400 events after cuts. Errors for mass differences are much smaller. Our ability to determine masses comes from considering all the kinematic information in the event, including the missing momentum, in conjunction with the quadratic constraints that arise from the YY, XX and NN mass-shell conditions. Realistic missing momentum and lepton momenta uncertainties are included in the analysis.Comment: 41 pages, 14 figures, various clarifications and expanded discussion included in revised version that conforms to the version to be publishe

    Spin Measurements in Cascade Decays at the LHC

    Full text link
    We systematically study the possibility of determining the spin of new particles after their discovery at the LHC. We concentrate on angular correlations in cascade decays. Motivated by constraints of electroweak precision tests and the potential of providing a Cold Dark Matter candidate, we focus on scenarios of new physics in which some discrete symmetry guarantees the existence of stable neutral particles which escape the detector. More specifically, we compare supersymmetry with another generic scenario in which new physics particles have the same spin as their Standard Model partners. A survey of possibilities of observing spin correlations in a broad range of decay channels is carried out, with interesting ones identified. Rather than confining ourselves to one "collider friendly" benchmark point (such as SPS1a), we describe the parameter region in which any particular decay channel is effective. We conduct a more detailed study of chargino's spin determination in the decay channel q~q+C~±q+W±+LSP\tilde{q}\to q + \tilde{C}^\pm \to q + W^\pm + LSP. A scan over the chargino and neutralino masses is performed. We find that as long as the spectrum is not too degenerate the prospects for spin determination in this channel are rather good.Comment: 36 pages, references added, 1 figure modifie

    Using Subsystem MT2 for Complete Mass Determinations in Decay Chains with Missing Energy at Hadron Colliders

    Get PDF
    We propose to use the MT2 concept to measure the masses of all particles in SUSY-like events with two unobservable, identical particles. To this end we generalize the usual notion of MT2 and define a new MT2(n,p,c) variable, which can be applied to various subsystem topologies, as well as the full event topology. We derive analytic formulas for its endpoint MT2{max}(n,p,c) as a function of the unknown test mass Mc of the final particle in the subchain and the transverse momentum pT due to radiation from the initial state. We show that the endpoint functions MT2{max}(n,p,c)(Mc,pT) may exhibit three different types of kinks and discuss the origin of each type. We prove that the subsystem MT2(n,p,c) variables by themselves already yield a sufficient number of measurements for a complete determination of the mass spectrum (including the overall mass scale). As an illustration, we consider the simple case of a decay chain with up to three heavy particles, X2 -> X1 -> X0, which is rather problematic for all other mass measurement methods. We propose three different MT2-based methods, each of which allows a complete determination of the masses of particles X0, X1 and X2. The first method only uses MT2(n,p,c) endpoint measurements at a single fixed value of the test mass Mc. In the second method the unknown mass spectrum is fitted to one or more endpoint functions MT2{max}(n,p,c)(Mc,pT) exhibiting a kink. The third method is hybrid, combining MT2 endpoints with measurements of kinematic edges in invariant mass distributions. As a practical application of our methods, we show that the dilepton W+W- and tt-bar samples at the Tevatron can be used for an independent determination of the masses of the top quark, the W boson and the neutrino, without any prior assumptions.Comment: 47 pages, 9 figures. revised version, published in JHEP. Major addition: a new appendix with the complete set of formulas for the MT2 endpoints as functions of the upstream transverse momentum pT and test mass M

    Probing CP Violation with the Deuteron Electric Dipole Moment

    Full text link
    We present an analysis of the electric dipole moment (EDM) of the deuteron as induced by CP-violating operators of dimension 4, 5 and 6 including theta QCD, the EDMs and color EDMs of quarks, four-quark interactions and the Weinberg operator. We demonstrate that the precision goal of the EDM Collaboration's proposal to search for the deuteron EDM, (1-3)\times 10^{-27} e cm, will provide an improvement in sensitivity to these sources of one-two orders of magnitude relative to the existing bounds. We consider in detail the level to which CP-odd phases can be probed within the MSSM.Comment: 5 pages, 4 figures; precision estimates clarified, to appear in Phys. Rev.

    Supersymmetry discovery potential of the LHC at s=\sqrt{s}=10 and 14 TeV without and with missing ETE_T

    Full text link
    We examine the supersymmetry (SUSY) reach of the CERN LHC operating at s=10\sqrt{s}=10 and 14 TeV within the framework of the minimal supergravity model. We improve upon previous reach projections by incorporating updated background calculations including a variety of 2n2\to n Standard Model (SM) processes. We show that SUSY discovery is possible even before the detectors are understood well enough to utilize either ETmissE_T^{\rm miss} or electrons in the signal. We evaluate the early SUSY reach of the LHC at s=10\sqrt{s}=10 TeV by examining multi-muon plus 4\ge4 jets and also dijet events with {\it no} missing ETE_T cuts and show that the greatest reach in terms of m1/2m_{1/2} occurs in the dijet channel. The reach in multi-muons is slightly smaller in m1/2m_{1/2}, but extends to higher values of m0m_0. We find that an observable multi-muon signal will first appear in the opposite-sign dimuon channel, but as the integrated luminosity increases the relatively background-free but rate-limited same-sign dimuon, and ultimately the trimuon channel yield the highest reach. We show characteristic distributions in these channels that serve to distinguish the signal from the SM background, and also help to corroborate its SUSY origin. We then evaluate the LHC reach in various no-lepton and multi-lepton plus jets channels {\it including} missing ETE_T cuts for s=10\sqrt{s}=10 and 14 TeV, and plot the reach for integrated luminosities ranging up to 3000 fb1^{-1} at the SLHC. For s=10\sqrt{s}=10 TeV, the LHC reach extends to mgluino=1.9,2.3,2.8m_{gluino}=1.9, 2.3, 2.8 and 2.9 TeV for msquarkmgluinom_{squark}\sim m_{gluino} and integrated luminosities of 10, 100, 1000 and 3000 fb1^{-1}, respectively. For s=14\sqrt{s}=14 TeV, the LHC reach for the same integrated luminosities is to m_{gluino}=2.4,\3.1, 3.7 and 4.0 TeV.Comment: 34 pages, 25 figures. Revised projections for the SUSY reach for ab^-1 integrated luminosities, with minor corrections of references and text. 2 figures added. To appear in JHE

    Measuring superparticle masses at hadron collider using the transverse mass kink

    Full text link
    We present a detailed study of the collider observable mT2m_{T2} applied for pair-produced superparticles decaying to visible particles and a pair of invisible lightest supersymmetric particles (LSPs). Analytic expressions of the maximum of mT2m_{T2} over all events (mT2maxm_{T2}^{\rm max}) are derived. It is noticed that if the decay product of each superparticle involves more than one visible particles, mT2maxm_{T2}^{\rm max} being a function of the {\it trial} LSP mass mχ{m}_\chi has a kink structure at mχ={m}_\chi= true LSP mass, which can be used to determine the mother superparticle mass and the LSP mass simultaneously. To see how well mT2maxm_{T2}^{\rm max} can be constructed from collider data, a Monte-Carlo analysis of the gluino mT2m_{T2} is performed for some superparticle spectra.Comment: Typos corrected. A few references added. Figures update

    Sparticle Spectra and LHC Signatures for Large Volume String Compactifications

    Full text link
    We study the supersymmetric particle spectra and LHC collider observables for the large-volume string models with a fundamental scale of 10^{11} GeV that arise in moduli-fixed string compactifications with branes and fluxes. The presence of magnetic fluxes on the brane world volume, required for chirality, perturb the soft terms away from those previously computed in the dilute-flux limit. We use the difference in high-scale gauge couplings to estimate the magnitude of this perturbation and study the potential effects of the magnetic fluxes by generating many random spectra with the soft terms perturbed around the dilute flux limit. Even with a 40% variation in the high-scale soft terms the low-energy spectra take a clear and predictive form. The resulting spectra are broadly similar to those arising on the SPS1a slope, but more degenerate. In their minimal version the models predict the ratios of gaugino masses to be M_1 : M_2 : M_3=(1.5 - 2) : 2 : 6, different to both mSUGRA and mirage mediation. Among the scalars, the squarks tend to be lighter and the sleptons heavier than for comparable mSUGRA models. We generate 10 fb^{-1} of sample LHC data for the random spectra in order to study the range of collider phenomenology that can occur. We perform a detailed mass reconstruction on one example large-volume string model spectrum. 100 fb^{-1} of integrated luminosity is sufficient to discriminate the model from mSUGRA and aspects of the sparticle spectrum can be accurately reconstructed.Comment: 42 pages, 21 figures. Added references and discussion for section 3. Slight changes in the tex

    Supersymmetry and the LHC Inverse Problem

    Full text link
    Given experimental evidence at the LHC for physics beyond the standard model, how can we determine the nature of the underlying theory? We initiate an approach to studying the "inverse map" from the space of LHC signatures to the parameter space of theoretical models within the context of low-energy supersymmetry, using 1808 LHC observables including essentially all those suggested in the literature and a 15 dimensional parametrization of the supersymmetric standard model. We show that the inverse map of a point in signature space consists of a number of isolated islands in parameter space, indicating the existence of "degeneracies"--qualitatively different models with the same LHC signatures. The degeneracies have simple physical characterizations, largely reflecting discrete ambiguities in electroweak-ino spectrum, accompanied by small adjustments for the remaining soft parameters. The number of degeneracies falls in the range 1<d<100, depending on whether or not sleptons are copiously produced in cascade decays. This number is large enough to represent a clear challenge but small enough to encourage looking for new observables that can further break the degeneracies and determine at the LHC most of the SUSY physics we care about. Degeneracies occur because signatures are not independent, and our approach allows testing of any new signature for its independence. Our methods can also be applied to any other theory of physics beyond the standard model, allowing one to study how model footprints differ in signature space and to test ways of distinguishing qualitatively different possibilities for new physics at the LHC.Comment: 55 pages, 30 figure
    corecore