626 research outputs found
A hybrid method for determining particle masses at the Large Hadron Collider with fully identified cascade decays
A new technique for improving the precision of measurements of SUSY particle
masses at the LHC is introduced. The technique involves kinematic fitting of
events with two fully identified decay chains. We incorporate both event ETmiss
constraints and independent constraints provided by kinematic end-points in
experiment invariant mass distributions of SUSY decay products. Incorporation
of the event specific information maximises the information used in the fit and
is shown to reduce the mass measurement uncertainites by ~30% compared to
conventional fitting of experiment end-point constraints for the SPS1a
benchmark model.Comment: 10 pages, 2 .eps figures, JHEP3 styl
Supersymmetric particle mass measurement with invariant mass correlations
The kinematic end-point technique for measuring the masses of supersymmetric
particles in R-Parity conserving models at hadron colliders is re-examined with
a focus on exploiting additional constraints arising from correlations in
invariant mass observables. The use of such correlations is shown to
potentially resolve the ambiguity in the interpretation of quark+lepton
end-points and enable discrimination between sequential two-body and three-body
lepton-producing decays. The use of these techniques is shown to improve the
SUSY particle mass measurement precision for the SPS1a benchmark model by at
least 20-30% compared to the conventional end-point technique.Comment: 29 pages, 23 .eps figures, JHEP3 style; v2 adds some references and
small clarifications to text; v3 adds some more clarifications to the tex
Mass Determination in SUSY-like Events with Missing Energy
We describe a kinematic method which is capable of determining the overall
mass scale in SUSY-like events at a hadron collider with two missing (dark
matter) particles. We focus on the kinematic topology in which a pair of
identical particles is produced with each decaying to two leptons and an
invisible particle (schematically, followed by each
decaying via where is invisible). This topology
arises in many SUSY processes such as squark and gluino production and decay,
not to mention t\anti t di-lepton decays. In the example where the final
state leptons are all muons, our errors on the masses of the particles ,
and in the decay chain range from 4 GeV for 2000 events after cuts to 13
GeV for 400 events after cuts. Errors for mass differences are much smaller.
Our ability to determine masses comes from considering all the kinematic
information in the event, including the missing momentum, in conjunction with
the quadratic constraints that arise from the , and mass-shell
conditions. Realistic missing momentum and lepton momenta uncertainties are
included in the analysis.Comment: 41 pages, 14 figures, various clarifications and expanded discussion
included in revised version that conforms to the version to be publishe
Spin Measurements in Cascade Decays at the LHC
We systematically study the possibility of determining the spin of new
particles after their discovery at the LHC. We concentrate on angular
correlations in cascade decays. Motivated by constraints of electroweak
precision tests and the potential of providing a Cold Dark Matter candidate, we
focus on scenarios of new physics in which some discrete symmetry guarantees
the existence of stable neutral particles which escape the detector. More
specifically, we compare supersymmetry with another generic scenario in which
new physics particles have the same spin as their Standard Model partners. A
survey of possibilities of observing spin correlations in a broad range of
decay channels is carried out, with interesting ones identified. Rather than
confining ourselves to one "collider friendly" benchmark point (such as SPS1a),
we describe the parameter region in which any particular decay channel is
effective. We conduct a more detailed study of chargino's spin determination in
the decay channel . A scan
over the chargino and neutralino masses is performed. We find that as long as
the spectrum is not too degenerate the prospects for spin determination in this
channel are rather good.Comment: 36 pages, references added, 1 figure modifie
Using Subsystem MT2 for Complete Mass Determinations in Decay Chains with Missing Energy at Hadron Colliders
We propose to use the MT2 concept to measure the masses of all particles in
SUSY-like events with two unobservable, identical particles. To this end we
generalize the usual notion of MT2 and define a new MT2(n,p,c) variable, which
can be applied to various subsystem topologies, as well as the full event
topology. We derive analytic formulas for its endpoint MT2{max}(n,p,c) as a
function of the unknown test mass Mc of the final particle in the subchain and
the transverse momentum pT due to radiation from the initial state. We show
that the endpoint functions MT2{max}(n,p,c)(Mc,pT) may exhibit three different
types of kinks and discuss the origin of each type. We prove that the subsystem
MT2(n,p,c) variables by themselves already yield a sufficient number of
measurements for a complete determination of the mass spectrum (including the
overall mass scale). As an illustration, we consider the simple case of a decay
chain with up to three heavy particles, X2 -> X1 -> X0, which is rather
problematic for all other mass measurement methods. We propose three different
MT2-based methods, each of which allows a complete determination of the masses
of particles X0, X1 and X2. The first method only uses MT2(n,p,c) endpoint
measurements at a single fixed value of the test mass Mc. In the second method
the unknown mass spectrum is fitted to one or more endpoint functions
MT2{max}(n,p,c)(Mc,pT) exhibiting a kink. The third method is hybrid, combining
MT2 endpoints with measurements of kinematic edges in invariant mass
distributions. As a practical application of our methods, we show that the
dilepton W+W- and tt-bar samples at the Tevatron can be used for an independent
determination of the masses of the top quark, the W boson and the neutrino,
without any prior assumptions.Comment: 47 pages, 9 figures. revised version, published in JHEP. Major
addition: a new appendix with the complete set of formulas for the MT2
endpoints as functions of the upstream transverse momentum pT and test mass
M
Probing CP Violation with the Deuteron Electric Dipole Moment
We present an analysis of the electric dipole moment (EDM) of the deuteron as
induced by CP-violating operators of dimension 4, 5 and 6 including theta QCD,
the EDMs and color EDMs of quarks, four-quark interactions and the Weinberg
operator. We demonstrate that the precision goal of the EDM Collaboration's
proposal to search for the deuteron EDM, (1-3)\times 10^{-27} e cm, will
provide an improvement in sensitivity to these sources of one-two orders of
magnitude relative to the existing bounds. We consider in detail the level to
which CP-odd phases can be probed within the MSSM.Comment: 5 pages, 4 figures; precision estimates clarified, to appear in Phys.
Rev.
Supersymmetry discovery potential of the LHC at 10 and 14 TeV without and with missing
We examine the supersymmetry (SUSY) reach of the CERN LHC operating at
and 14 TeV within the framework of the minimal supergravity
model. We improve upon previous reach projections by incorporating updated
background calculations including a variety of Standard Model (SM)
processes. We show that SUSY discovery is possible even before the detectors
are understood well enough to utilize either or electrons in
the signal. We evaluate the early SUSY reach of the LHC at TeV by
examining multi-muon plus jets and also dijet events with {\it no}
missing cuts and show that the greatest reach in terms of
occurs in the dijet channel. The reach in multi-muons is slightly smaller in
, but extends to higher values of . We find that an observable
multi-muon signal will first appear in the opposite-sign dimuon channel, but as
the integrated luminosity increases the relatively background-free but
rate-limited same-sign dimuon, and ultimately the trimuon channel yield the
highest reach. We show characteristic distributions in these channels that
serve to distinguish the signal from the SM background, and also help to
corroborate its SUSY origin. We then evaluate the LHC reach in various
no-lepton and multi-lepton plus jets channels {\it including} missing
cuts for and 14 TeV, and plot the reach for integrated
luminosities ranging up to 3000 fb at the SLHC. For TeV,
the LHC reach extends to and 2.9 TeV for
and integrated luminosities of 10, 100, 1000 and
3000 fb, respectively. For TeV, the LHC reach for the same
integrated luminosities is to m_{gluino}=2.4,\3.1, 3.7 and 4.0 TeV.Comment: 34 pages, 25 figures. Revised projections for the SUSY reach for
ab^-1 integrated luminosities, with minor corrections of references and text.
2 figures added. To appear in JHE
Measuring superparticle masses at hadron collider using the transverse mass kink
We present a detailed study of the collider observable applied for
pair-produced superparticles decaying to visible particles and a pair of
invisible lightest supersymmetric particles (LSPs). Analytic expressions of the
maximum of over all events () are derived. It is
noticed that if the decay product of each superparticle involves more than one
visible particles, being a function of the {\it trial} LSP
mass has a kink structure at true LSP mass, which can be
used to determine the mother superparticle mass and the LSP mass
simultaneously. To see how well can be constructed from
collider data, a Monte-Carlo analysis of the gluino is performed for
some superparticle spectra.Comment: Typos corrected. A few references added. Figures update
Sparticle Spectra and LHC Signatures for Large Volume String Compactifications
We study the supersymmetric particle spectra and LHC collider observables for
the large-volume string models with a fundamental scale of 10^{11} GeV that
arise in moduli-fixed string compactifications with branes and fluxes. The
presence of magnetic fluxes on the brane world volume, required for chirality,
perturb the soft terms away from those previously computed in the dilute-flux
limit. We use the difference in high-scale gauge couplings to estimate the
magnitude of this perturbation and study the potential effects of the magnetic
fluxes by generating many random spectra with the soft terms perturbed around
the dilute flux limit. Even with a 40% variation in the high-scale soft terms
the low-energy spectra take a clear and predictive form. The resulting spectra
are broadly similar to those arising on the SPS1a slope, but more degenerate.
In their minimal version the models predict the ratios of gaugino masses to be
M_1 : M_2 : M_3=(1.5 - 2) : 2 : 6, different to both mSUGRA and mirage
mediation. Among the scalars, the squarks tend to be lighter and the sleptons
heavier than for comparable mSUGRA models. We generate 10 fb^{-1} of sample LHC
data for the random spectra in order to study the range of collider
phenomenology that can occur. We perform a detailed mass reconstruction on one
example large-volume string model spectrum. 100 fb^{-1} of integrated
luminosity is sufficient to discriminate the model from mSUGRA and aspects of
the sparticle spectrum can be accurately reconstructed.Comment: 42 pages, 21 figures. Added references and discussion for section 3.
Slight changes in the tex
Supersymmetry and the LHC Inverse Problem
Given experimental evidence at the LHC for physics beyond the standard model,
how can we determine the nature of the underlying theory? We initiate an
approach to studying the "inverse map" from the space of LHC signatures to the
parameter space of theoretical models within the context of low-energy
supersymmetry, using 1808 LHC observables including essentially all those
suggested in the literature and a 15 dimensional parametrization of the
supersymmetric standard model. We show that the inverse map of a point in
signature space consists of a number of isolated islands in parameter space,
indicating the existence of "degeneracies"--qualitatively different models with
the same LHC signatures. The degeneracies have simple physical
characterizations, largely reflecting discrete ambiguities in electroweak-ino
spectrum, accompanied by small adjustments for the remaining soft parameters.
The number of degeneracies falls in the range 1<d<100, depending on whether or
not sleptons are copiously produced in cascade decays. This number is large
enough to represent a clear challenge but small enough to encourage looking for
new observables that can further break the degeneracies and determine at the
LHC most of the SUSY physics we care about. Degeneracies occur because
signatures are not independent, and our approach allows testing of any new
signature for its independence. Our methods can also be applied to any other
theory of physics beyond the standard model, allowing one to study how model
footprints differ in signature space and to test ways of distinguishing
qualitatively different possibilities for new physics at the LHC.Comment: 55 pages, 30 figure
- …