33 research outputs found

    Progress in development of graded bandgap thin film solar cells with electroplated materials

    Get PDF
    Photovoltaic devices are developed mainly based on p-n or p-i-n type device structures, and these devices can utilise only a fraction of the solar spectrum. In order to further improve device parameters and move towards low-cost and high-efficiency next generation solar cells, device architectures capable of harvesting all photons available should be designed and developed. One such architecture is the fully graded bandgap device structure as proposed recently based on both n-type and p-type window layers. These designs have been experimentally tested using well researched GaAs/AlGaAs system producing impressive device parameters of open circuit voltage (Voc) ~1175 mV and fill factor (FF) ~0.85. The devices have also been experimentally tested for the evidence of impurity photovoltaic (PV) effect and impact ionisation taking place within the same device. Since these structures have been experimentally proved with a well-established semiconductor, the effort has been focussed on developing these devices using low-cost and scalable electroplated semiconductors, in order to minimise manufacturing cost. This paper reviews and summarises the work carried out during the past decade on this subject. Graded bandgap devices produced using only two or three electroplated semiconductor layers have been explored and their conversion efficiencies have gradually increased from 10.0%, through 12.8% to 15.3% for different structures. While the work is progressing along this line, the paper summarises the achievements to date

    US at a crossroads

    No full text

    Investigation of carrier recombination dynamics of InGaP/InGaAsP multiple quantum wells for solar cells via photoluminescence

    No full text
    The carrier recombination dynamics of InGaP/InGaAsP quantum wells is reported for the first time. By studying the photoluminescence (PL) and time-resolved PL decay of InGaP/InGaAsP multiple-quantum-well (MQW) heterostructure samples, it is demonstrated that InGaP/InGaAsP MQWs have very low nonradiative recombination rate and high radiative efficiency compared with the control InGaP sample. Along with the analyses of PL emission spectrum and external quantum efficiencies, it suggests that this is due to small confinement potentials in the conduction band but high confinement potentials in the valence band. These results explain several features found in InGaP/InGaAsP MQW solar cells previously
    corecore