34,909 research outputs found
Unleashing the Power of Distributed CPU/GPU Architectures: Massive Astronomical Data Analysis and Visualization case study
Upcoming and future astronomy research facilities will systematically
generate terabyte-sized data sets moving astronomy into the Petascale data era.
While such facilities will provide astronomers with unprecedented levels of
accuracy and coverage, the increases in dataset size and dimensionality will
pose serious computational challenges for many current astronomy data analysis
and visualization tools. With such data sizes, even simple data analysis tasks
(e.g. calculating a histogram or computing data minimum/maximum) may not be
achievable without access to a supercomputing facility.
To effectively handle such dataset sizes, which exceed today's single machine
memory and processing limits, we present a framework that exploits the
distributed power of GPUs and many-core CPUs, with a goal of providing data
analysis and visualizing tasks as a service for astronomers. By mixing shared
and distributed memory architectures, our framework effectively utilizes the
underlying hardware infrastructure handling both batched and real-time data
analysis and visualization tasks. Offering such functionality as a service in a
"software as a service" manner will reduce the total cost of ownership, provide
an easy to use tool to the wider astronomical community, and enable a more
optimized utilization of the underlying hardware infrastructure.Comment: 4 Pages, 1 figures, To appear in the proceedings of ADASS XXI, ed.
P.Ballester and D.Egret, ASP Conf. Serie
On a q-analogue of the multiple gamma functions
A -analogue of the multiple gamma functions is introduced, and is shown to
satisfy the generalized Bohr-Morellup theorem. Furthermore we give some
expressions of these function.Comment: 8 pages, AMS-Late
Spin polarization control through resonant states in an Fe/GaAs Schottky barrier
Spin polarization of the tunnel conductivity has been studied for Fe/GaAs
junctions with Schottky barriers. It is shown that band matching of resonant
interface states within the Schottky barrier defines the sign of spin
polarization of electrons transported through the barrier. The results account
very well for experimental results including the tunneling of photo-excited
electrons, and suggest that the spin polarization (from -100% to 100%) is
dependent on the Schottky barrier height. They also suggest that the sign of
the spin polarization can be controlled with a bias voltage.Comment: 5 pages, 4 figure
On the Symmetries of the Edgar-Ludwig Metric
The conformal Killing equations for the most general (non-plane wave)
conformally flat pure radiation field are solved to find the conformal Killing
vectors. As expected fifteen independent conformal Killing vectors exist, but
in general the metric admits no Killing or homothetic vectors. However for
certain special cases a one-dimensional group of homotheties or motions may
exist and in one very special case, overlooked by previous investigators, a
two-dimensional homethety group exists. No higher dimensional groups of motions
or homotheties are admitted by these metrics.Comment: Plain TeX, 7 pages, No figure
Entry flight control system downmoding evaluation
A method to desensitize the entry flight control system to structural vibration feedback which might induce an oscillatory instability is described. Trends in vehicle response and handling characteristics as a function of gain combinations in the FCS forward and rate feedback loops were described as observed in a man-in-the-loop simulation. Among the flight conditions considered are the effects of downmoding with APU failures, off-nominal trajectory conditions, sensed angle of attack errors, the impact on RCS fuel consumption, performance in the presence of aero variations, recovery from large FCS upsets, and default gains
Safety hazards associated with the charging of lithium/sulfur dioxide cells
A continuing research program to assess the responses of spirally wound, lithium/sulfur dioxide cells to charging as functions of charging current, temperature, and cell condition prior to charging is described. Partially discharged cells that are charged at currents greater than one ampere explode with the time to explosion inversely proportional to the charging current. Cells charged at currents of less than one ampere may fail in one of several modes. The data allows an empirical prediction of when certain cells will fail given a constant charging current
- …