174 research outputs found
Breaking Eight-fold Degeneracies in Neutrino CP Violation, Mixing, and Mass Hierarchy
We identify three independent two-fold parameter degeneracies (\delta,
\theta_{13}), sgn(\delta m^2_{31}) and (\theta_{23}, \pi/2-\theta_{23})
inherent in the usual three-neutrino analysis of long-baseline neutrino
experiments, which can lead to as much as an eight-fold degeneracy in the
determination of the oscillation parameters. We discuss the implications these
degeneracies have for detecting CP violation and present criteria for breaking
them. A superbeam facility with a baseline at least as long as the distance
between Fermilab and Homestake (1290 km) and a narrow band beam with energy
tuned so that the measurements are performed at the first oscillation peak can
resolve all the ambiguities other than the (\theta_{23}, \pi/2-\theta_{23})
ambiguity (which can be resolved at a neutrino factory) and a residual (\delta,
\pi-\delta) ambiguity. However, whether or not CP violation occurs in the
neutrino sector can be ascertained independently of the latter two ambiguities.
The (\delta,\pi-\delta) ambiguity can be eliminated by performing a second
measurement to which only the \cos\delta terms contribute. The hierarchy of
mass eigenstates can be determined at other oscillation peaks only in the most
optimistic conditions, making it necessary to use the first oscillation
maximum. We show that the degeneracies may severely compromise the ability of
the proposed SuperJHF-HyperKamiokande experiment to establish CP violation. In
our calculations we use approximate analytic expressions for oscillation
probabilitites that agree with numerical solutions with a realistic Earth
density profile.Comment: Revtex (singlespaced), 35 pages, 15 postscript figures, uses
psfig.st
Three-flavor solar neutrino oscillations with terrestrial neutrino constraints
We present an updated analysis of the current solar neutrino data in terms of
three-flavor oscillations, including the additional constraints coming from
terrestrial neutrino oscillation searches at the CHOOZ (reactor),
Super-Kamiokande (atmospheric), and KEK-to-Kamioka (accelerator) experiments.
The best fit is reached for the subcase of two-family mixing, and the
additional admixture with the third neutrino is severely limited. We discuss
the relevant features of the globally allowed regions in the oscillation
parameter space, as well as their impact on the amplitude of possible
CP-violation effects at future accelerator experiments and on the
reconstruction accuracy of the mass-mixing oscillation parameters at the
KamLAND reactor experiment.Comment: 10 pages + 8 figure
Quasi-energy-independent solar neutrino transitions
Current solar, atmospheric, and reactor neutrino data still allow oscillation
scenarios where the squared mass differences are all close to 10^-3 eV^2,
rather than being hierarchically separated. For solar neutrinos, this situation
(realized in the upper part of the so-called large-mixing angle solution)
implies adiabatic transitions which depend weakly on the neutrino energy and on
the matter density, as well as on the ``atmospheric'' squared mass difference.
In such a regime of ``quasi-energy-independent'' (QEI) transitions,
intermediate between the more familiar ``Mikheyev-Smirnov-Wolfenstein'' (MSW)
and energy-independent (EI) regimes, we first perform analytical calculations
of the solar nu_e survival probability at first order in the matter density,
beyond the usual hierarchical approximations. We then provide accurate,
generalized expressions for the solar neutrino mixing angles in matter, which
reduce to those valid in the MSW, QEI and EI regimes in appropriate limits.
Finally, a representative QEI scenario is discussed in some detail.Comment: Title changed; text and acronyms revised; results unchanged. To
appear in PR
Analysis of oscillations of atmospheric neutrinos
We briefly review the current status of standard oscillations of atmospheric
neutrinos in schemes with two, three, and four flavor mixing. It is shown that,
although the pure \nu_\mu-->\nu_\tau channel provides an excellent 2\nu fit to
the data, one cannot exclude, at present, the occurrence of additional
subleading \nu_\mu-->\nu_e oscillations (3\nu schemes) or of sizable
\nu_\mu-->\nu_s oscillations (4\nu schemes). It is also shown that the wide
dynamical range of energy and pathlength probed by the Super-Kamiokande
experiment puts severe constraints on nonstandard explanations of the
atmospheric neutrino data, with a few notable exceptions.Comment: Talk at the 19th International Conference on Neutrino Physics and
Astrophysics - Neutrino 2000 (Sudbury, Ontario, Canada, 16-21 June 2000
Solar neutrino oscillations and indications of matter effects in the Sun
Assuming the current best-fit solutions to the solar neutrino problem at
large mixing angle, we briefly illustrate how prospective data from the Sudbury
Neutrino Observatory (SNO) and from the Kamioka Liquid scintillator
Anti-Neutrino Detector (KamLAND) can increase our confidence in the occurrence
of standard matter effects on active neutrino flavor oscillations in the Sun,
which are starting to emerge from current data.Comment: Updated to include the first KamLAND data. One figure adde
Symmetric Textures in SO(10) and LMA Solution for Solar Neutrinos
We analyze a model based on SUSY SO(10) combined with SU(2) family symmetry
and symmetric mass matrices constructed by the authors recently. Previously,
only the parameter space for the LOW and vacuum oscillation (VO) solutions was
investigated. We indicate in this note the parameter space which leads to large
mixing angle (LMA) solution to the solar neutrino problem with a slightly
modified effective neutrino mass matrix. The symmetric mass textures arising
from the left-right symmetry breaking and the SU(2) symmetry breaking give rise
to very good predictions for the quark and lepton masses and mixing angles. The
prediction of our model for the |U_{e\nu_{3}}| element in the
Maki-Nakagawa-Sakata (MNS) matrix is close to the sensitivity of current
experiments; thus the validity of our model can be tested in the near future.
We also investigate the correlation between the |U_{e\nu_{3}}| element and
\tan^{2}\theta_{\odot} in a general two-zero neutrino mass texture.Comment: RevTeX4; 9 pages; 1 figur
Solar neutrino oscillation parameters after first KamLAND results
We analyze the energy spectrum of reactor neutrino events recently observed
in the Kamioka Liquid scintillator Anti-Neutrino Detector (KamLAND) and combine
them with solar and terrestrial neutrino data, in the context of two- and
three-family active neutrino oscillations. In the 2-neutrino case, we find that
the solution to the solar neutrino problem at large mixing angle (LMA) is
basically split into two sub-regions, that we denote as LMA-I and LMA-II. The
LMA-I solution, characterized by lower values of the squared neutrino mass gap,
is favored by the global data fit. This picture is not significantly modified
in the 3-neutrino mixing case. A brief discussion is given about the
discrimination of the LMA-I and LMA-II solutions with future KamLAND data. In
both the 2- and 3-neutrino cases, we present a detailed analysis of the
post-KamLAND bounds on the oscillation parameters.Comment: Revised version. Two figures adde
Status of atmospheric neutrino(mu)<-->neutrino(tau) oscillations and decoherence after the first K2K spectral data
We review the status of nu_mu-->nu_tau flavor transitions of atmospheric
neutrinos in the 92 kton-year data sample collected in the first phase of the
Super-Kamiokande (SK) experiment, in combination with the recent spectral data
from the KEK-to-Kamioka (K2K) accelerator experiment (including 29 single-ring
muon events). We consider a theoretical framework which embeds flavor
oscillations plus hypothetical decoherence effects, and where both standard
oscillations and pure decoherence represent limiting cases. It is found that
standard oscillations provide the best description of the SK+K2K data, and that
the associated mass-mixing parameters are determined at 1 sigma (and d.o.f.=1)
as: Delta m^2=(2.6 +- 0.4)x10^{-3} eV^2 and sin^2(2theta)=1.00+0.00-0.05. As
compared with standard oscillations, the case of pure decoherence is
disfavored, although it cannot be ruled out yet. In the general case,
additional decoherence effects in the nu_mu-->nu_tau channel do not improve the
fit to the SK and K2K data, and upper bounds can be placed on the associated
decoherence parameter. Such indications, presently dominated by SK, could be
strengthened by further K2K data, provided that the current spectral features
are confirmed with higher statistics. A detailed description of the statistical
analysis of SK and K2K data is also given, using the so-called ``pull''
approach to systematic uncertainties.Comment: 18 pages (RevTeX) + 12 figures (PostScript
Neutrino oscillation parameters from MINOS, ICARUS and OPERA combined
We perform a detailed analysis of the capabilities of the MINOS, ICARUS and
OPERA experiments to measure neutrino oscillation parameters at the atmospheric
scale with their data taken separately and in combination. MINOS will determine
and to within 10% at the 99% C.L. with
10 kton-years of data. While no one experiment will determine with much precision, if its value lies in the combined
sensitivity region of the three experiments, it will be possible to place a
lower bound of O(0.01) at the 95% C.L. on this parameter by combining the data
from the three experiments. The same bound can be placed with a combination of
MINOS and ICARUS data alone.Comment: Version to appear in PR
Neutrino Factories and the "Magic" Baseline
We show that for a neutrino factory baseline of a
``clean'' measurement of becomes possible, which is
almost unaffected by parameter degeneracies. We call this baseline "magic"
baseline, because its length only depends on the matter density profile. For a
complete analysis, we demonstrate that the combination of the magic baseline
with a baseline of 3000 km is the ideal solution to perform equally well for
the , sign of , and CP violation
sensitivities. Especially, this combination can very successfully resolve
parameter degeneracies even below .Comment: Minor changes, final version to appear in PRD, 4 pages, 3 figures,
RevTe
- …