174 research outputs found

    Breaking Eight-fold Degeneracies in Neutrino CP Violation, Mixing, and Mass Hierarchy

    Get PDF
    We identify three independent two-fold parameter degeneracies (\delta, \theta_{13}), sgn(\delta m^2_{31}) and (\theta_{23}, \pi/2-\theta_{23}) inherent in the usual three-neutrino analysis of long-baseline neutrino experiments, which can lead to as much as an eight-fold degeneracy in the determination of the oscillation parameters. We discuss the implications these degeneracies have for detecting CP violation and present criteria for breaking them. A superbeam facility with a baseline at least as long as the distance between Fermilab and Homestake (1290 km) and a narrow band beam with energy tuned so that the measurements are performed at the first oscillation peak can resolve all the ambiguities other than the (\theta_{23}, \pi/2-\theta_{23}) ambiguity (which can be resolved at a neutrino factory) and a residual (\delta, \pi-\delta) ambiguity. However, whether or not CP violation occurs in the neutrino sector can be ascertained independently of the latter two ambiguities. The (\delta,\pi-\delta) ambiguity can be eliminated by performing a second measurement to which only the \cos\delta terms contribute. The hierarchy of mass eigenstates can be determined at other oscillation peaks only in the most optimistic conditions, making it necessary to use the first oscillation maximum. We show that the degeneracies may severely compromise the ability of the proposed SuperJHF-HyperKamiokande experiment to establish CP violation. In our calculations we use approximate analytic expressions for oscillation probabilitites that agree with numerical solutions with a realistic Earth density profile.Comment: Revtex (singlespaced), 35 pages, 15 postscript figures, uses psfig.st

    Three-flavor solar neutrino oscillations with terrestrial neutrino constraints

    Get PDF
    We present an updated analysis of the current solar neutrino data in terms of three-flavor oscillations, including the additional constraints coming from terrestrial neutrino oscillation searches at the CHOOZ (reactor), Super-Kamiokande (atmospheric), and KEK-to-Kamioka (accelerator) experiments. The best fit is reached for the subcase of two-family mixing, and the additional admixture with the third neutrino is severely limited. We discuss the relevant features of the globally allowed regions in the oscillation parameter space, as well as their impact on the amplitude of possible CP-violation effects at future accelerator experiments and on the reconstruction accuracy of the mass-mixing oscillation parameters at the KamLAND reactor experiment.Comment: 10 pages + 8 figure

    Quasi-energy-independent solar neutrino transitions

    Get PDF
    Current solar, atmospheric, and reactor neutrino data still allow oscillation scenarios where the squared mass differences are all close to 10^-3 eV^2, rather than being hierarchically separated. For solar neutrinos, this situation (realized in the upper part of the so-called large-mixing angle solution) implies adiabatic transitions which depend weakly on the neutrino energy and on the matter density, as well as on the ``atmospheric'' squared mass difference. In such a regime of ``quasi-energy-independent'' (QEI) transitions, intermediate between the more familiar ``Mikheyev-Smirnov-Wolfenstein'' (MSW) and energy-independent (EI) regimes, we first perform analytical calculations of the solar nu_e survival probability at first order in the matter density, beyond the usual hierarchical approximations. We then provide accurate, generalized expressions for the solar neutrino mixing angles in matter, which reduce to those valid in the MSW, QEI and EI regimes in appropriate limits. Finally, a representative QEI scenario is discussed in some detail.Comment: Title changed; text and acronyms revised; results unchanged. To appear in PR

    Analysis of oscillations of atmospheric neutrinos

    Get PDF
    We briefly review the current status of standard oscillations of atmospheric neutrinos in schemes with two, three, and four flavor mixing. It is shown that, although the pure \nu_\mu-->\nu_\tau channel provides an excellent 2\nu fit to the data, one cannot exclude, at present, the occurrence of additional subleading \nu_\mu-->\nu_e oscillations (3\nu schemes) or of sizable \nu_\mu-->\nu_s oscillations (4\nu schemes). It is also shown that the wide dynamical range of energy and pathlength probed by the Super-Kamiokande experiment puts severe constraints on nonstandard explanations of the atmospheric neutrino data, with a few notable exceptions.Comment: Talk at the 19th International Conference on Neutrino Physics and Astrophysics - Neutrino 2000 (Sudbury, Ontario, Canada, 16-21 June 2000

    Solar neutrino oscillations and indications of matter effects in the Sun

    Get PDF
    Assuming the current best-fit solutions to the solar neutrino problem at large mixing angle, we briefly illustrate how prospective data from the Sudbury Neutrino Observatory (SNO) and from the Kamioka Liquid scintillator Anti-Neutrino Detector (KamLAND) can increase our confidence in the occurrence of standard matter effects on active neutrino flavor oscillations in the Sun, which are starting to emerge from current data.Comment: Updated to include the first KamLAND data. One figure adde

    Symmetric Textures in SO(10) and LMA Solution for Solar Neutrinos

    Full text link
    We analyze a model based on SUSY SO(10) combined with SU(2) family symmetry and symmetric mass matrices constructed by the authors recently. Previously, only the parameter space for the LOW and vacuum oscillation (VO) solutions was investigated. We indicate in this note the parameter space which leads to large mixing angle (LMA) solution to the solar neutrino problem with a slightly modified effective neutrino mass matrix. The symmetric mass textures arising from the left-right symmetry breaking and the SU(2) symmetry breaking give rise to very good predictions for the quark and lepton masses and mixing angles. The prediction of our model for the |U_{e\nu_{3}}| element in the Maki-Nakagawa-Sakata (MNS) matrix is close to the sensitivity of current experiments; thus the validity of our model can be tested in the near future. We also investigate the correlation between the |U_{e\nu_{3}}| element and \tan^{2}\theta_{\odot} in a general two-zero neutrino mass texture.Comment: RevTeX4; 9 pages; 1 figur

    Solar neutrino oscillation parameters after first KamLAND results

    Get PDF
    We analyze the energy spectrum of reactor neutrino events recently observed in the Kamioka Liquid scintillator Anti-Neutrino Detector (KamLAND) and combine them with solar and terrestrial neutrino data, in the context of two- and three-family active neutrino oscillations. In the 2-neutrino case, we find that the solution to the solar neutrino problem at large mixing angle (LMA) is basically split into two sub-regions, that we denote as LMA-I and LMA-II. The LMA-I solution, characterized by lower values of the squared neutrino mass gap, is favored by the global data fit. This picture is not significantly modified in the 3-neutrino mixing case. A brief discussion is given about the discrimination of the LMA-I and LMA-II solutions with future KamLAND data. In both the 2- and 3-neutrino cases, we present a detailed analysis of the post-KamLAND bounds on the oscillation parameters.Comment: Revised version. Two figures adde

    Status of atmospheric neutrino(mu)<-->neutrino(tau) oscillations and decoherence after the first K2K spectral data

    Get PDF
    We review the status of nu_mu-->nu_tau flavor transitions of atmospheric neutrinos in the 92 kton-year data sample collected in the first phase of the Super-Kamiokande (SK) experiment, in combination with the recent spectral data from the KEK-to-Kamioka (K2K) accelerator experiment (including 29 single-ring muon events). We consider a theoretical framework which embeds flavor oscillations plus hypothetical decoherence effects, and where both standard oscillations and pure decoherence represent limiting cases. It is found that standard oscillations provide the best description of the SK+K2K data, and that the associated mass-mixing parameters are determined at 1 sigma (and d.o.f.=1) as: Delta m^2=(2.6 +- 0.4)x10^{-3} eV^2 and sin^2(2theta)=1.00+0.00-0.05. As compared with standard oscillations, the case of pure decoherence is disfavored, although it cannot be ruled out yet. In the general case, additional decoherence effects in the nu_mu-->nu_tau channel do not improve the fit to the SK and K2K data, and upper bounds can be placed on the associated decoherence parameter. Such indications, presently dominated by SK, could be strengthened by further K2K data, provided that the current spectral features are confirmed with higher statistics. A detailed description of the statistical analysis of SK and K2K data is also given, using the so-called ``pull'' approach to systematic uncertainties.Comment: 18 pages (RevTeX) + 12 figures (PostScript

    Neutrino oscillation parameters from MINOS, ICARUS and OPERA combined

    Get PDF
    We perform a detailed analysis of the capabilities of the MINOS, ICARUS and OPERA experiments to measure neutrino oscillation parameters at the atmospheric scale with their data taken separately and in combination. MINOS will determine Δm322\Delta m^2_{32} and sin22θ23\sin^2 2\theta_{23} to within 10% at the 99% C.L. with 10 kton-years of data. While no one experiment will determine sin22θ13\sin^2 2\theta_{13} with much precision, if its value lies in the combined sensitivity region of the three experiments, it will be possible to place a lower bound of O(0.01) at the 95% C.L. on this parameter by combining the data from the three experiments. The same bound can be placed with a combination of MINOS and ICARUS data alone.Comment: Version to appear in PR

    Neutrino Factories and the "Magic" Baseline

    Get PDF
    We show that for a neutrino factory baseline of L7300km7600kmL \sim 7300 km - 7 600 km a ``clean'' measurement of sin22θ13\sin^2 2 \theta_{13} becomes possible, which is almost unaffected by parameter degeneracies. We call this baseline "magic" baseline, because its length only depends on the matter density profile. For a complete analysis, we demonstrate that the combination of the magic baseline with a baseline of 3000 km is the ideal solution to perform equally well for the sin22θ13\sin^2 2 \theta_{13}, sign of Δm312\Delta m_{31}^2, and CP violation sensitivities. Especially, this combination can very successfully resolve parameter degeneracies even below sin22θ13<104\sin^2 2 \theta_{13} < 10^{-4}.Comment: Minor changes, final version to appear in PRD, 4 pages, 3 figures, RevTe
    corecore