178 research outputs found

    Quantum Computation of a Complex System : the Kicked Harper Model

    Full text link
    The simulation of complex quantum systems on a quantum computer is studied, taking the kicked Harper model as an example. This well-studied system has a rich variety of dynamical behavior depending on parameters, displays interesting phenomena such as fractal spectra, mixed phase space, dynamical localization, anomalous diffusion, or partial delocalization, and can describe electrons in a magnetic field. Three different quantum algorithms are presented and analyzed, enabling to simulate efficiently the evolution operator of this system with different precision using different resources. Depending on the parameters chosen, the system is near-integrable, localized, or partially delocalized. In each case we identify transport or spectral quantities which can be obtained more efficiently on a quantum computer than on a classical one. In most cases, a polynomial gain compared to classical algorithms is obtained, which can be quadratic or less depending on the parameter regime. We also present the effects of static imperfections on the quantities selected, and show that depending on the regime of parameters, very different behaviors are observed. Some quantities can be obtained reliably with moderate levels of imperfection, whereas others are exponentially sensitive to imperfection strength. In particular, the imperfection threshold for delocalization becomes exponentially small in the partially delocalized regime. Our results show that interesting behavior can be observed with as little as 7-8 qubits, and can be reliably measured in presence of moderate levels of internal imperfections

    Correlates of genetic monogamy in socially monogamous mammals: insights from Azara's owl monkeys

    Get PDF
    Understanding the evolution of mating systems, a central topic in evolutionary biology for more than 50 years, requires examining the genetic consequences of mating and the relationships between social systems and mating systems. Among pair-living mammals, where genetic monogamy is extremely rare, the extent of extra-group paternity rates has been associated withmale participation in infant care, strength of the pair bond and length of the breeding season. This study evaluated the relationship between two of those factors and the genetic mating system of socially monogamous mammals, testing predictions that male care and strength of pair bond would be negatively correlated with rates of extra-pair paternity (EPP). Autosomal microsatellite analyses provide evidence for genetic monogamy in a pair-living primate with bi-parental care, the Azara’s owl monkey (Aotus azarae). A phylogenetically corrected generalized least square analysis was used to relate male care and strength of the pair bond to their genetic mating system (i.e. proportions of EPP) in 15 socially monogamous mammalian species. The intensity of male care was correlated with EPP rates in mammals, while strength of pair bond failed to reach statistical significance. Our analyses showthat, once social monogamy has evolved, paternal care, and potentially also close bonds, may facilitate the evolution of genetic monogamy.German Science Foundation (HU 1746/2-1); Wenner-Gren Foundation; L.S.B. Leakey Foundation;National Geographic Society; National Science Foundation (BCS-0621020, 1219368, and 1232349); the University of Pennsylvania Research Foundation; the Zoological Society of San Dieg

    Two interacting Hofstadter butterflies

    Full text link
    The problem of two interacting particles in a quasiperiodic potential is addressed. Using analytical and numerical methods, we explore the spectral properties and eigenstates structure from the weak to the strong interaction case. More precisely, a semiclassical approach based on non commutative geometry techniques permits to understand the intricate structure of such a spectrum. An interaction induced localization effect is furthermore emphasized. We discuss the application of our results on a two-dimensional model of two particles in a uniform magnetic field with on-site interaction.Comment: revtex, 12 pages, 11 figure

    Interaction induced delocalisation for two particles in a periodic potential

    Full text link
    We consider two interacting particles evolving in a one-dimensional periodic structure embedded in a magnetic field. We show that the strong localization induced by the magnetic field for particular values of the flux per unit cell is destroyed as soon as the particles interact. We study the spectral and the dynamical aspects of this transition.Comment: 4 pages, 5 EPS figures, minor misprints correcte

    Plant microbiome analysis after Metarhizium amendment reveals increases in abundance of plant growth-promoting organisms and maintenance of disease-suppressive soil

    Get PDF
    The microbial community in the plant rhizosphere is vital to plant productivity and disease resistance. Alterations in the composition and diversity of species within this community could be detrimental if microbes suppressing the activity of pathogens are removed. Species of the insect-pathogenic fungus, Metarhizium, commonly employed as biological control agents against crop pests, have recently been identified as plant root colonizers and provide a variety of benefits (e.g. growth promotion, drought resistance, nitrogen acquisition). However, the impact of Metarhizium amendment on the rhizosphere microbiome has yet to be elucidated. Using Illumina sequencing, we examined the community profiles (bacteria and fungi) of common bean (Phaseolus vulgaris) rhizosphere (loose soil and plant root) after amendment with M. robertsii conidia, in the presence and absence of an insect host. Although alpha diversity was not significantly affected overall, there were numerous examples of plant growth-promoting organisms that significantly increased with Metarhizium amendment (Bradyrhizobium, Flavobacterium, Chaetomium, Trichoderma). Specifically, the abundance of Bradyrhizobium, a group of nitrogen-fixing bacteria, was confirmed to be increased using a qPCR assay with genus-specific primers. In addition, the ability of the microbiome to suppress the activity of a known bean root pathogen was assessed. The development of disease symptoms after application with Fusarium solani f. sp. phaseoli was visible in the hypocotyl and upper root of plants grown in sterilized soil but was suppressed during growth in microbiome soil and soil treated with M. robertsii. Successful amendment of agricultural soils with biocontrol agents such as Metarhizium necessitates a comprehensive understanding of the effects on the diversity of the rhizosphere microbiome. Such research is fundamentally important towards sustainable agricultural practices to improve overall plant health and productivity.Brock University Library Open Access Publishing Fun

    Morphological diversity of cassava accessions of the south-central mesoregion of the State of Mato Grosso, Brazil.

    Get PDF
    Genetic variability of cassava (Manihot esculenta Crantz) in Brazil is wide, being this the result of natural and cultural selection during pre- and post-domestication of the species in different environments. Given the number of species of the genus found in the region (38 of a total of 98 species), the central region of Brazil was defined as the primary center of cassava diversity. Therefore, genetic diversity characterization of cassava accessions is fundamental, both for farmers and for plant breeders, because it allows the organization of genetic resources and better utilization of available genetic diversity. This research aims to assess genetic divergence of cassava accessions from the south-central region of the State of Mato Grosso, based on multi-categorical morphological traits. For this purpose, 38 qualitative and quantitative morphological descriptors were used. Genetic diversity was expressed by the genetic similarity index, with subsequent clustering of accessions by the modified Tocher?s procedure and UPGMA. Of 38 descriptors, only growth habit of stem showed no variability. Tocher and UPGMA methods were efficient and corroborated on group composition. Both methods were able to group accessions of different localities in distinct group consistency

    Avaliação de acessos de mandioca quanto ao teor de ácido cianídrico em raízes frescas.

    Get PDF
    A mandioca é considerada a espécie cianogênica mais importante do Brasil, sendo classificada pela taxonomia popular em bravas e mansas dependendo do teor de ácido cianídrico encontrado nas raízes. Este componente varia substancialmente em razão da variedade, mas pode variar também, em menor escala, em relação as condições de cultivo, época de colheita e condições ambientais. As mandiocas consideradas bravas têm sabor amargo, e elevado teor de glicosídeos cianogênicos, e podem ser consumidas após o processamento. As consideradas mansas não têm sabor amargo, contêm baixo teor de glicosídeos cianogênicos e podem ser consumidas com ou sem qualquer processamento. Com a finalidade de colaborar na seleção de novas cultivares de mandioca para o consumo ?in natura?, seja na alimentação animal ou humana, esta pesquisa objetivou analisar o teor de ácido cianídrico de 159 acessos de mandioca, pertencentes à coleção de mandioca da Embrapa Agrosilvipastoril e Unemat/Cáceres. As amostras de raiz foram colhidas aos 12 meses após o plantio. Para determinar o teor de ácido cianídrico livre foi utilizada a metodologia de cromatografia iônica proposta por Caliamannis et al. (2000) modificada. Os padrões para classificar o acesso de mandioca como mansa ou brava seguiu o proposto por Bolhuis (1954), que classifica mandiocas mansas, com teor abaixo de 100 mg kg-1 de ácido cianídrico e bravas, com teor maior que 100 mg kg-1. Os teores de ácido cianídrico dos acessos variaram de 2.03 mg kg-1 para o acesso UNRO-15 a 487,26 mg kg-1, registrado no acesso ENJA-43. Dos acessos avaliados, 52% apresentaram teor de ácido cianídrico abaixo de 100 mg kg-1, sendo consideradas mansas e recomendadas para o consumo ?in natura?. Já os acessos considerados como mandioca brava somaram 48%, podendo estes ser destinados à indústria, uma vez que o processamento da raiz baseia-se na dissolução e volatilização dos princípios tóxicos. A identificação de variedades de mandioca com baixos teores HCN em raízes frescas é importante para o respaldo e segurança nas recomendações de cultivares destinada a alimentação humana ou animal. Por isso, destaca-se a relevância de programas de melhoramento genético que visam à identificação e seleção de novas variedades de mandioca para consumo na forma de raízes frescas com baixos teores de ácido cianídrico

    Wavefunction and level statistics of random two dimensional gauge fields

    Full text link
    Level and wavefunction statistics have been studied for two dimensional clusters of the square lattice in the presence of random magnetic fluxes. Fluxes traversing lattice plaquettes are distributed uniformly between - (1/2) Phi_0 and (1/2) Phi_0 with Phi_0 the flux quantum. All considered statistics start close to the corresponding Wigner-Dyson distribution for small system sizes and monotonically move towards Poisson statistics as the cluster size increases. Scaling is quite rapid for states close to the band edges but really difficult to observe for states well within the band. Localization properties are discussed considering two different scenarios. Experimental measurement of one of the considered statistics --wavefunction statistics seems the most promising one-- could discern between both possibilities. A real version of the previous model, i.e., a system that is invariant under time reversal, has been studied concurrently to get coincidences and differences with the Hermitian model.Comment: 12 twocolumnn pages in revtex style, 17 postscript figures, to be published in PRB, send comments to [email protected]

    Two Interacting Electrons in a Quasiperiodic Chain

    Full text link
    We study numerically the effect of on-site Hubbard interaction U between two electrons in the quasiperiodic Harper's equation. In the periodic chain limit by mapping the problem to that of one electron in two dimensions with a diagonal line of impurities of strength U we demonstrate a band of resonance two particle pairing states starting from E=U. In the ballistic (metallic) regime we show explicitly interaction-assisted extended pairing states and multifractal pairing states in the diffusive (critical) regime. We also obtain localized pairing states in the gaps and the created subband due to U, whose number increases when going to the localized regime, which are responsible for reducing the velocity and the diffusion coefficient in the qualitatively similar to the non-interacting case ballistic and diffusive dynamics. In the localized regime we find propagation enhancement for small U and stronger localization for larger U, as in disordered systems.Comment: 14 pages Revtex file, 8 figures (split into 19 jpg figures). (postscript versions of the jpg figures are also available upon request) submitted to PR
    corecore