341 research outputs found
PROFIT: a new alternative for emission-line PROfile FITting
I briefly describe a simple routine for emission-line profiles fitting by
Gaussian curves or Gauss-Hermite series. The PROFIT (line-PROfile FITting)
routine represent a new alternative for use in fits data cubes, as those from
Integral Field Spectroscopy or Fabry-Perot Interferometry, and may be useful to
better study the emission-line flux distributions and gas kinematics in
distinct astrophysical objects, such as the central regions of galaxies and
star forming regions. The PROFIT routine is written in IDL language and is
available at http://www.ufsm.br/rogemar/software.html.
The PROFIT routine was used to fit the [Fe II]1.257um emission-line profiles
for about 1800 spectra of the inner 350 pc of the Seyfert galaxy Mrk1066
obtained with Gemini NIFS and shows that the line profiles are better
reproduced by Gauss-Hermite series than by the commonly used Gaussian curves.
The two-dimensional map of the h_3 Gauss-Hermite moment shows its highest
absolute values in regions close to the edge of the radio structure. These high
values may be originated in an biconical outflowing gas associated with the
radio jet - previously observed in the optical [O III] emission. The analysis
of this kinematic component indicates that the radio jet leaves the center of
the galaxy with the north-west side slightly oriented towards us and the
south-east side away from us, being partially hidden by the disc of the galaxy.Comment: Accepted for publication Astrophysics & Space Science - 7 pges; 4
Fig
Curved Flats, Pluriharmonic Maps and Constant Curvature Immersions into Pseudo-Riemannian Space Forms
We study two aspects of the loop group formulation for isometric immersions
with flat normal bundle of space forms. The first aspect is to examine the loop
group maps along different ranges of the loop parameter. This leads to various
equivalences between global isometric immersion problems among different space
forms and pseudo-Riemannian space forms. As a corollary, we obtain a
non-immersibility theorem for spheres into certain pseudo-Riemannian spheres
and hyperbolic spaces.
The second aspect pursued is to clarify the relationship between the loop
group formulation of isometric immersions of space forms and that of
pluriharmonic maps into symmetric spaces. We show that the objects in the first
class are, in the real analytic case, extended pluriharmonic maps into certain
symmetric spaces which satisfy an extra reality condition along a totally real
submanifold. We show how to construct such pluriharmonic maps for general
symmetric spaces from curved flats, using a generalised DPW method.Comment: 21 Pages, reference adde
One-dimensional Photonic Crystal For The 1.3-1.5 μm Region
Multilayer of PbTe quantum dots embedded in SiO2 were fabricated by alternatively use of Plasma Enhanced Chemical Vapor Deposition and Laser Ablation techniques. The optimal growing parameters for both the SiO2 films and the PbTe quantum dots were obtained. The refractive index and optical absorption of the sample were studied. Multilayer X-ray diffraction patterns were used to estimate the nanoparticles diameter. Morphological properties of the nanostructured material were studied using Transmission Electron Microscopy. Both absorption spectra and X-ray diffraction patterns reveled the nanoparticles are 6-8 nm in diameter, consequently appropriate for developing optical devices in the infra red region. Finally the multilayer was grown inside a Fabry Perot cavity. The transmittance of the one-dimensional photonic crystal was measured.6129Tsunetomo, K., Shunsuke, S., Koyama, T., Tanaka, S., Sasaki, F., Kobayashi, S., Ultrafast nonlinear optical response of CdTe microcrystallite-doped glasses fabricated by laser evaporation (1995) Molecular Crystals and Liquid Crystals Science and Technology Section B, Nonlinear Optics, 13 (1-3), pp. 109-126Gleiter, H., (1989) Prog. Mater. Sci., 33, p. 223Tudury, G.E., Marquezini, M.V., Ferreira, L.G., Barbosa, L.C., Cesar, C.L., Effect of band anisotropy on electronic structure of PbS, PbSe, and PbTe quantum dots (2000) Phys. Rev. B, 62 (11), pp. 7357-7364Rodriguez, E., Jimenez, E., Padilha, L.A., Neves, A.A.R., Jacob, G.J., Cesar, C.L., Barbosa, L.C., SiO2/PbTe quantum dots multilayer production and characterization (2005) Appl. Phys. Lett., 86, pp. 113117-113120Rodriguez, E., Jimenez, E., Cesar, C.L., Barbosa, L.C., 1D photonic band gap silica doped PbTe quantum dot optical device (2005) Glass Technology, 46 (2), pp. 47-49Rodriguez, E., Jimenez, E., Neves, A.A.R., Jacob, G.J., Cesar, C.L., Barbosa, L.C., Fabrication and characterization of PbTe quantum dot multilayers for Photonic Fabry-Perot Devices (2005) Physica E, 26, pp. 361-36
Ultra Large Amplification Bandwidth Of Er3+ And Tm3+ At S And L Band From Teo2-wo3-na2o-nb 2o5 Glass Doped Optical Fibers
Tellurite glasses optical fibers became promising for optical amplifiers due to its high rare earth ions solubility and very large amplification bandwidth. Among several tellurite glasses the TeO2-WO 3-Na2O-Nb2O5 system show one of the largest bandwidth. Our previous characterization of lifetime using the Ω2, Ω4, Ω6, Judd-Ofelt parameters indicate a quantum efficiency maximum for 7500ppm Er3+ concentration. Therefore we decided to produce jointed Er3+ and Tm3+ single mode optical fibers with this glass system keeping the 7500ppm Er3+ concentration and varying the Tm3+ concentration from 2500ppm to 15000ppm. This single mode fiber was pumped by 120mW of the semiconductor laser at 790nm and we observed a flat ASE bandwidth from 1400 to 1570nm for the 5000ppm Tm3+ concentration.5723243247Jeong, H., Oh, K., Han, S.R., Morse, T.F., Broadband amplified spontaneous emission from an Er3+-Tm 3+ - Codoped silica fibar (2003) Opt. Lett., 28, pp. 161-163Reisfeld, R., Jorgensen, C.K., (1987) Handbook on the Physics and Chemistry of Rare Earths, 9, pp. 1-90. , K. A. Gschneidner, Jr. and L. Eyring (Eds.), Elsevier ScienceChen, C.Y., Petrin, R.R., Yeh, D.C., Sibley, W.A., Concentration-dependent energy-transfer processes in Er3+-and Tm3+ -doped heavy-metal fluoride (1989) Opt. Lett., 14, pp. 432-434Miniscalco, W.J., Quimby, R.S., General procedure for the analysis of Er3+ cross sections (1991) Opt. Lett, 16, pp. 258-26
Pbte Quantum Dots - Sio2 Multilayers For Optical Devices Produced By Laser Ablation
Thin films of glass doped with PbTe quantum dots were successfully fabricated. The semiconducting quantum dots were grown by laser ablation of a PbTe target (99.99%) using the second harmonic of a Q-Switched Quantel Nd:YAG laser under high purity argon atmosphere. The glass matrix was fabricated by a plasma chemical vapor deposition method using vapor of tetramethoxysilane (TMOS) as precursor. The QD's and the glass matrix were alternately deposited onto a Si (100) wafer for 60 cycles. Cross-section TEM image clearly showed QD's layer well separated from each other with glass matrix layers. The influence of the ablation time on the size distribution of the quantum dots is studied. HRTEM revealed anisotropy in the size of the QD's: they were about 9nm in the high and 3-5 in diameter. Furthermore HRTEM studies revealed that the QD's basically growth in the (200) and (220) directions. The thickness of the glass matrix layer was about 20 nm. Absorption, photo luminescence and relaxation time of the multilayer were also measured.5734116123Alivisatos, A.P., (1996) Sci., 271, p. 933Warnock, J., Awschalom, D.D., (1985) Phys. Rev. B, 32, p. 5529Borrelli, N.F., May, D.W., Holland, H.J., Smith, D.W., (1987) J. Appl. Phys., 61, p. 399Potter, B.G., Simmons, J.H., (1988) Phys. Rev. B, 37, p. 10838Gleiter, H., (1989) Prog. Mater. Sci., 33, p. 223Tsunetomo, K., Shunsuke, S., Koyama, T., Tanaka, S., Sasaki, F., Kobayashi, S., (1995) Nonlinear Opt., 13, p. 109Reynoso, V.C.S., De Paula, A.M., Cuevas, R.F., Neto, J.A.M., Alves, O.L., Cesar, C.L., Barbosa, L.C., (1995) Electr. Lett., 31 (12), pp. 1013-1015Jacob, G.J., Cesar, C.L., Barbosa, L.C., (2002) Chem. Phys. Glass, 43 C, pp. 250-252Singh, R.K., Narayan, J., (1990) Phys. Rev. B, 41, p. 8843Barnes, J.P., (2002) Nanotechnology, 13, p. 465Tudury, G.E., Marquezini, M.V., Ferreira, L.G., Barbosa, L.C., Cesar, C.L., (2000) Phys. Rev. B, 62 (11), pp. 7357-7364Cesar, C.L., Jacob, G.J., Tudury, G.E., Marquezini, M.V., Barbosa, L.C., (2004) Atti della Fondazione G. Ronchi Journal, (4), pp. 519-528. , Anno LI
Carbon Nanotube Doped Tellurite Glasses
In the past it was observed that buck ball doped glasses showed enhanced optical nonlinearities. However, carbon nanotubes are much more stable than buck ball and should be a better choice for that purpose. Therefore we decided to investigate the possibility to produce carbon nanotubes doped tellurite glasses and measured their optical nonlinearities. Tellurite glasses already have a larger nonlinearity compared to silica, and other, glasses. We produced TeO 2-ZnO tellurite family glasses doped with multi wall Carbon Nanotube (CNT). The CNTs acquired from Carbolex were vigorously mechanically mixed with the tellurite glass precursors and melted in platinum crucible around 650°C in a controlled atmosphere inside an electrical induction furnace. We used the lowest temperature possible and controlled atmosphere to avoid the CNT oxidation. The glass melt was cast in a stainless steel and thermally treated at 300°C for 5 hours to relieve internal stresses. The samples were than cutted and polished to perform the optical characterization. We measured refractive index and thermo physical properties, such as vitreous transition Tg, crystallization onset Tx and melting Tf temperatures. Raman spectroscopy showed the possible presence of CNTs.6890Iijima, S., (1991) Nature, 354, p. 56http://www.ati.surrey.ac.uk/news/n, onlinearDiMaio, J., Rhyne, S., Yang, Z., Fu, K., Czerw, R., Xu, J., Webster, S., Ballato, J., (2003) Information Sciences, 149, p. 69Aoki, Y., Okubo, S., Kataura, H., Nagasawa, H., Achiba, Y., (2005) Chem. Lett, 34 (4), p. 562Misra, S.K., Watts, P.C.P., Valappil, S.P., Silva, S.R.P., Roy, I., Boccaccini, A.R., (2007) Nanotechnology, 18, p. 07570
Quantum Confinement Effects On The Phonons Of Pbte Quantum Dots In Tellurite Glasses
We present Raman-scattering results for PbTe quantum dots (QDs) in doped telluride glasses which clearly show the confinement effects on the phonon spectra as a function of the quantum-dot size..6892Kraus and F. Wise;Phys. Rev. Lett. 79 (25), 5102-05 (1997)Thoen, E.R., (1998) Appl, Phys. Lett, 73 (15), p. 2149Wise, F., (2000) Ace. Chem. Res, 33, pp. 773-780Tsuda, S., Cruz, C.H.B., (1991) Opt. Lett, 16, p. 1596Nakamura, A., Tokizaki, T., Akiyama, H., Kataoka, T., (1992) J. Lumin, 53, p. 105Ohtsuka, S., Koyama, T., Tsunetomo, K., Nagata, H., Tanaka, S., (1992) Appl. Phys. Lett, 61, p. 2953Tsunetomo, K., Ohtsuka, S., Koyama, T., Tanaka, S., Sasaki, F., Kobayashi, S., (1995) Nonlin. Opt, 13, p. 109Colvin, V.L., Schlamp, M.C., Alivisatos, A.P., (1995) Nature ∼London, 370, p. 354Dabbousi, M., Bawendi, G., Onitsuka, O., Rubner, M.F., (1995) Appl. Phys. Lett, 66, p. 1316Guerreiro, T., Ten, S., Borrelli, N.F., Butty, J., Jabbour, G.E., Peyghambarian, N., (1997) Appl. Phys. Lett, 71, p. 1595Murray, C.B., Kagan, C.R., Bawendi, M.G., (1995) Science, 270, p. 1335Kang, I., Wise, F.W., (1997) J. Opt. Soc. Am. B, 14, p. 1632Reynoso, V.C.S., de Paula, A.M., Cuevas, R.F., Medeiros Neto, J.A., Alves, O.L., Cesar, C.L., Barbosa, L.C., (1995) Electron. Lett, 31, p. 1013G.J.Jacob, C.L.Cesar,L.C.Barbosa, Chem.Phys.Glass 43C (2002)250-252Esch, V., Fluegel, B., Khitrova, G., Gibbs, H.M., Jiajin, X., Kang, K., Koch, S.W., Peyghambarian, N., (1990) Phys. Rev, B42, p. 7450Sercel, P.C., Valhala, K.J., (1990) Phys. Rev, B42, p. 3690Schoenlein, R.W., Mittleman, D.M., Shiang, J.J., Alivisatos, A.P., Shank, C.V., (1993) Phys. Rev. Lett, 70, p. 1014Ekimov, A.I., Hache, F., Schanne-Klein, M.C., Ricard, D., Flytzanis, C., Kudryavtsev, I.A., Yazeva, T.V., Efros, A.L., (1993) J. Opt. Soc. Am, B10, p. 100Norris, D.J., Sacra, A., Bawendi, C.B.M.M.G., (1994) Phys. Rev. Lett, 72, p. 2612de Oliveira, C.R.M., de Paula, A.M., Filho, F.O.P., Neto, J.A.M., Barbosa, L.C., Alves, O.L., Menezes, E.A., Cesar, C.L., (1995) Appl. Phys. Lett, 66, p. 439R. Ruppin and R. Englman, Rep. Prog. Phys. 33, 149 (1970)R. Ruppin, J. Phys. C: 8, 1969 (1975)Thoen, E.R., Steinmeyer, G., Langlois, P., Ippen, E.P., Tudury, G.E., Brito Cruz, C.H., Barbosa, L.C., Cesar, C.L., (1998) Appl. Phys. Lett, 73Krauss, T.D., Wise, F.W., Coherent and Acoustical Phonon in a Semiconductor Quantum DotsPhis (1997) Rev. Lett, 79, pp. 5102-510
Micro-structured Er 3+-tm 3+ Co-doped Tellurite Fiber For Broadband Optical Amplifier Around 1550nm
Micro-structured Er 3+-Tm 3+ co-doped tellurite fiber with three rings of holes was fabricated using a soft glass drawing tower by a stack-and-draw technique. Amplified spontaneous emission (ASE) around 1550nm band were observed when pumped with both, 980nm and 790nm, lasers.6314Russell, P., Photonic crystal fibers (2003) Science, 299, pp. 358-362Knight, J.C., Photonic crystal fibers (2003) Nature, 424, pp. 847-851Kumar, V.V.R.K., George, A.K., Reeves, W.H., Knight, J.C., Russell, P.St.J., Omenetto, F.G., Taylor, A.J., Extruded soft glass photonic crystal fiber for ultrabroad supercontinuum generation (2002) Opt. Exp, 10 (25), pp. 1520-1525Chillcce, E.F., Cordeiro, C.M.B., Barbosa, L.C., Cruz, C.H.B., Er 3+-Tm 3+ co-doped tellurite fibers for broadband optical fiber amplifier around 1550nm band (2006) Opt. Fiber Technol., 12, pp. 185-195Chillcce, E.F., Rodriguez, E., Neves, A.A.R., Moreira, W.C., Cesar, C.L., Barbosa, L.C., Cruz, C.H.B., Tellurite photonic crystal fiber by a stack-and-draw technique (2006) J. Non-cryst. Solids, , accepted to publicationWhite, T.P., McPhedran, R.C., De Sterke, C.M., Botten, L.C., Steel, M.J., Confinement losses in microstructured optical fibers (2001) Opt. Lett, 26 (21), pp. 1660-1663Barbosa, L.C., Cruz, C.H.B., Cesar, C.L., Cordeiro, C.M.B., Chillcce, E.F., Production process of tellurite glass tubes, capillaries and rods Brazilian pending Patent No 018050002734Chillcce, E.F., Cordeiro, C.M.B., Rodriguez, E., Cruz, C.H.B., Cesar, C.L., Barbosa, L.C., Tellurite photonic crystal fiber with Er 3+-Tm 3+ for broadband optical amplifier in 1550nm (2006) Proc. of SPIE, 6116, p. 61160
Pbte Quantum Dots In Tellurite Glass Microstructured Optical Fiber
PbTe doped tellurite glass photonic optical fiber for non linear application were developed using rod in tube method in a draw tower. We follow the growth kinetics of the quantum dots in the optical fiber by High Resolution Transmission Electron Microscopy giving some results related with the growth kinetic of the same in function of time so much for optical fiber as for the glass bulk. Absorption peak near 1500 nm as observed and it was attributed the optical resonance due PbTe quantum dots in the core fiber.6902Tsunetomo, K., (1995) Nonlinear Opt, 13, p. 109Borrelli, N.F., Smith, D.W., (1994) J. Non-Cryst. Soi, 180, p. 25Lipovskii, A., Kolobkova, E.A., Petrikov, V., Kang, I., Olkhovets, A., Krauus, T., Thomas, M., Kycia, S., (1997) Appl. Phys. Lett, 71, p. 3406Reynoso, V.C.S., de Paula, A.M., Cuevas, R.F., Medeiros Neto, J.A., Alves, O.L., Cesar, C.L., Barbosa, L.C., (1995) Elect. Lett, 31 (12), pp. 1013-1014Rodrigues, E., Jimenez, E., Jacob, G.J., Neves, A.A.A., Cesar, C.L., Barbosa, L.C., (2005) Phisica E, 26, pp. 321-325Jacob, G.J., Cesar, C.L., Barbosa, L.C., Tellurite Glass Doped with PbTe Quantum Dots (2002) Physics and Chemistry of Glass, 43 C, pp. 250-253Jacob, G.J., Rodriguez, E., Barbosa, L.C., Cesar, C.L., Tellurite Glass Optical fiber doped with PbTe Quantum DotsPhotonics West 2005, The International Society for Optical Engineering SPIEEnomoto, Y., Tokuyama, M., Kawasaki, K., (1986) Act. Metall, 34, p. 2139Marqusee, J.A., Ross, J., (1984) J. Chem. Phys, 80, p. 536Lifshitz, E.M., Slyozov, V.V., (1961) J. Phys. Chem. Sol, 19, p. 3
Measuring Electrical And Mechanical Properties Of Red Blood Cells With A Double Optical Tweezers
The fluid lipid bilayer viscoelastic membrane of red blood cells (RBC) contains antigen glycolproteins and proteins which can interact with antibodies to cause cell agglutination. This is the basis of most of the immunohematologic tests in blood banks and the identification of the antibodies against the erythrocyte antigens is of fundamental importance for transfusional routines. The negative charges of the RBCs creates a repulsive electric (zeta) potential between the cells and prevents their aggregation in the blood stream. The first counterions cloud strongly binded moving together with the RBC is called the compact layer. This report proposes the use of a double optical tweezers for a new procedure for measuring: (1) the apparent membrane viscosity, (2) the cell adhesion, (3) the zeta potential and (4) the compact layer's size of the charges formed around the cell in the electrolytic solution. To measure the membrane viscosity we trapped silica beads strongly attached to agglutinated RBCs and measured the force to slide one RBC over the other as a function of the relative velocity. The RBC adhesion was measured by slowly displacing two RBCs apart until the disagglutination happens. The compact layer's size was measured using the force on the silica bead attached to a single RBC in response to an applied voltage and the zeta potential was obtained by measuring the terminal velocity after releasing the RBC from the optical trap at the last applied voltage. We believe that the methodology here proposed can improve the methods of diagnosis in blood banks.6326Eylar, E.H., Madoff, M.A., Brody, O.V., Oncley, J.L., The contribution of sialic acid to the surface charge of the erythrocyte (1962) J. Biol. Chem., 237, pp. 1992-2000Pollack, W., Reckel, R.P., A reappraisal of the forces involved in Hemagglutination (1977) Int Archs Allergy Appl. Immun., 54, pp. 29-42Ashkin, A., Dziedzic, J.M., Bjorkholm, J.E., Chu, S., Observation of a single-beam gradient force trap for dielectric particles (1986) Opt. Lett., 11, pp. 288-290Ashkin, A., Dziedzic, J.M., Optical trapping and manipulation of viruses and bacteria (1987) Science, 235, pp. 1517-1520Grier, D.G., A revolution in optical manipulation (2003) Nature, 424, pp. 810-816Zhu, C., Bao, G., Wang, N., Cell Mechanics: Mechanical response, cell adhesion, and molecular deformation (2000) Annu. Rev. Biomed. Eng., 2, pp. 189-226Neuman, K.C., Block, S., Optical trapping (2004) Rev. Sci. Instrum., 75, pp. 2787-2809Saffman, P.G., Delbruck, M., Brownian motion in biological membranes (1975) Proc. Nat. Acad. Sci. USA, 72, pp. 3111-3113Dimova, R., Danov, K., Pouligny, B., Ivanov, I.B., Drag of a solid particle trapped in a thin film or at an interface: Influence of surface viscosity and elasticity (2000) J. Colloid and Interface Science, 226, pp. 35-43Hochmuth, R., Worthy, P., Evans, E., Red cell extensional recovery and the determination of membrane viscosity (1979) Biophys. J., 26, pp. 101-114Sze, A., Erickson, D., Ren, L., Li, D., Zeta-potential measurement using the Smoluchowski equation and the slope of the current-time relationship in electroosmotic flow (2003) J. Colloid and Interface Science, 261, pp. 402-410Hunter, R.J., (1981) Zeta Potential in Colloid Science, , Academic Press, New YorkPollack, W., Hager, H.J., Reckel, R., Toren, D.A., Singher, H.O., A study of the forces involved in the second stage of hemaggltination (1965) Transfusion, 5, pp. 158-183Chelidze, T., Dielectric spectroscopy of blood (2002) J. Non-crystalline Solids, 305, pp. 285-294Hymer, W.C., Barlow, G.H., Blaisdell, S.J., Continuous flow electrophoretic separation of proteins and cells from mammalian tissues (1987) Cell Biophys., 10, pp. 61-85Hashimoto, N., Fujita, S., Yokoyama, T., Cell electrophoretic mobility and glycerol lysis of human erythrocytes in various diseases (1998) Electrophoresis, 19, pp. 1227-123
- …
