1,065 research outputs found
Crystallization of fractional charges in a strongly interacting quasi-helical quantum dot
The ground-state electron density of a one-dimensional spin-orbit coupled
quantum dot with a Zeeman term and strong electron interaction is studied at
the fractional helical liquid points. We show that at fractional filling
factors (with a non-negative integer) the density
oscillates with peak. For a number of peaks larger than
the number of electrons suggests that a crystal of fractional
quasi-particles with charge (with the electron charge) occurs. The
reported effect is amenable of verification via transport measurements in
charged AFM-coupled dot
Neural networks for gamma-hadron separation in MAGIC
Neural networks have proved to be versatile and robust for particle
separation in many experiments related to particle astrophysics. We apply these
techniques to separate gamma rays from hadrons for the MAGIC Cerenkov
Telescope. Two types of neural network architectures have been used for the
classi cation task: one is the MultiLayer Perceptron (MLP) based on supervised
learning, and the other is the Self-Organising Tree Algorithm (SOTA), which is
based on unsupervised learning. We propose a new architecture by combining
these two neural networks types to yield better and faster classi cation
results for our classi cation problem.Comment: 6 pages, 4 figures, to be published in the Proceedings of the 6th
International Symposium ''Frontiers of Fundamental and Computational
Physics'' (FFP6), Udine (Italy), Sep. 26-29, 200
Full Characterization of the First 1 Inch Industrial Prototype of a New Concept Photodetector
The VSiPMT (Vacuum Silicon PhotoMultiplier Tube) is an original design for an
innovative light detector we proposed with the aim to create new scientific
instrumentation for industrial applications and physics research. The idea
behind this device is to replace the classical dynode chain of a
photomultiplier tube with a silicon photomultiplier, the latter acting as an
electron detector and amplifier. The VSiPMT offers very attractive features and
unprecedented performance, definitely superior to every other photodetector
with comparable sensitive surface, such as: negligible power cosumption,
excellent photon counting, easy low-voltage-based stabilization and very good
time performance. After the feasibility test of the idea, Hamamatsu Photonics
realized for our research group two VSiPMT industrial prototypes, that have
been fully characterized. The results of the full characterization of the
1-inch industrial prototype are presented in this work.Comment: 11 pages, 14 figure
A MACRO sampler
We present results from approximately 2 years running with the MACRO detector. Most of these data were taken with one of the six supermodules of the final detector in operation. Using a sample of 1.8×106 muons with E≳1.4 TeV we have searched for an excess of muons of celestial origin over cosmic ray background. No evidence for steady point sources was found. The upper limit on the muon flux at 95% CL is typically 2×10−12 cm−2 sec−2. No evidence for time modulated point sources was found. The muon multiplicity distribution favors a ‘‘light’’ composition for cosmic ray primaries with ≊75% protons above ∼103 TeV. We have also searched for neutrino bursts from supernovae in our Galaxy. None were observed during the period Oct. 1989 to Feb. 1992. Our sensitivity to neutrino bursts from collapsing stars extends to ≊60% of the stars in the Galaxy.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/87712/2/1222_1.pd
The luminous late-time emission of the type Ic supernova iPTF15dtg - evidence for powering from a magnetar?
iPTF15dtg is a Type Ic supernova (SN) showing a broad light curve around
maximum light, consistent with massive ejecta if we assume a
radioactive-powering scenario. We study the late-time light curve of iPTF15dtg,
which turned out to be extraordinarily luminous for a stripped-envelope (SE)
SN. We compare the observed light curves to those of other SE SNe and also with
models for the Co decay. We analyze and compare the spectra to nebular
spectra of other SE SNe. We build a bolometric light curve and fit it with
different models, including powering by radioactivity, magnetar powering, as
well as a combination of the two. Between 150 d and 750 d past explosion,
iPTF15dtg's luminosity declined by merely two magnitudes instead of the six
magnitudes expected from Co decay. This is the first
spectroscopically-regular SE SN showing this behavior. The model with both
radioactivity and magnetar powering provides the best fit to the light curve
and appears to be the more realistic powering mechanism. An alternative
mechanism might be CSM interaction. However, the spectra of iPTF15dtg are very
similar to those of other SE SNe, and do not show signs of strong CSM
interaction. iPTF15dtg is the first spectroscopically-regular SE SN whose light
curve displays such clear signs of a magnetar contributing to the powering of
the late time light curve. Given this result, the mass of the ejecta needs to
be revised to a lower value, and therefore the progenitor mass could be
significantly lower than the previously estimated 35 .Comment: 9 pages, 8 figures, accepted for publication in Astronomy and
Astrophysic
A new generation photodetector for astroparticle physics: the VSiPMT
The VSiPMT (Vacuum Silicon PhotoMultiplier Tube) is an innovative design we
proposed for a revolutionary photon detector. The main idea is to replace the
classical dynode chain of a PMT with a SiPM (G-APD), the latter acting as an
electron detector and amplifier. The aim is to match the large sensitive area
of a photocathode with the performance of the SiPM technology. The VSiPMT has
many attractive features. In particular, a low power consumption and an
excellent photon counting capability. To prove the feasibility of the idea we
first tested the performance of a special non-windowed SiPM by Hamamatsu (MPPC)
as electron detector and current amplifier. Thanks to this result Hamamatsu
realized two VSiPMT industrial prototypes. In this work, we present the results
of a full characterization of the VSiPMT prototype
- …