26 research outputs found

    Weakly coupled one-dimensional Mott insulators

    Full text link
    We consider a model of one-dimensional Mott insulators coupled by a weak interchain tunnelling t⊄t_\perp. We first determine the single-particle Green's function of a single chain by exact field-theoretical methods and then take the tunnelling into account by means of a Random Phase Approximation (RPA). In order to embed this approximation into a well-defined expansion with a small parameter, the Fourier transform T⊄(k)T_\perp(k) of the interchain coupling is assumed to have a small support in momentum space such that every integration over transverse wave vector yields a small factor Îș02â‰Ș1\kappa_0^2 \ll 1. When \tp(0) exceeds a critical value, a small Fermi surface develops in the form of electron and hole pockets. We demonstrate that Luttinger's theorem holds both in the insulating and in the metallic phases. We find that the quasi-particle residue ZZ increases very fast through the transition and quickly reaches a value of about 0.4−0.60.4-0.6. The metallic state close to the transition retains many features of the one-dimensional system in the form of strong incoherent continua.Comment: 14 pages, 13 figure

    Dynamic protein methylation in chromatin biology

    Get PDF
    Post-translational modification of chromatin is emerging as an increasingly important regulator of chromosomal processes. In particular, histone lysine and arginine methylation play important roles in regulating transcription, maintaining genomic integrity, and contributing to epigenetic memory. Recently, the use of new approaches to analyse histone methylation, the generation of genetic model systems, and the ability to interrogate genome wide histone modification profiles has aided in defining how histone methylation contributes to these processes. Here we focus on the recent advances in our understanding of the histone methylation system and examine how dynamic histone methylation contributes to normal cellular function in mammals

    Factors Associated with Revision Surgery after Internal Fixation of Hip Fractures

    Get PDF
    Background: Femoral neck fractures are associated with high rates of revision surgery after management with internal fixation. Using data from the Fixation using Alternative Implants for the Treatment of Hip fractures (FAITH) trial evaluating methods of internal fixation in patients with femoral neck fractures, we investigated associations between baseline and surgical factors and the need for revision surgery to promote healing, relieve pain, treat infection or improve function over 24 months postsurgery. Additionally, we investigated factors associated with (1) hardware removal and (2) implant exchange from cancellous screws (CS) or sliding hip screw (SHS) to total hip arthroplasty, hemiarthroplasty, or another internal fixation device. Methods: We identified 15 potential factors a priori that may be associated with revision surgery, 7 with hardware removal, and 14 with implant exchange. We used multivariable Cox proportional hazards analyses in our investigation. Results: Factors associated with increased risk of revision surgery included: female sex, [hazard ratio (HR) 1.79, 95% confidence interval (CI) 1.25-2.50; P = 0.001], higher body mass index (fo
    corecore