12,428 research outputs found
Embedding the Pentagon
The Pentagon Model is an explicit supersymmetric extension of the Standard
Model, which involves a new strongly-interacting SU(5) gauge theory at
TeV-scale energies. We show that the Pentagon can be embedded into an SU(5) x
SU(5) x SU(5) gauge group at the GUT scale. The doublet-triplet splitting
problem, and proton decay compatible with experimental bounds, can be
successfully addressed in this context. The simplest approach fails to provide
masses for the lighter two generations of quarks and leptons; however, this
problem can be solved by the addition of a pair of antisymmetric tensor fields
and an axion.Comment: 39 page
Natural PQ symmetry in the 3-3-1 model with a minimal scalar sector
In the framework of a 3-3-1 model with a minimal scalar sector we make a
detailed study concerning the implementation of the PQ symmetry in order to
solve the strong CP problem. For the original version of the model, with only
two scalar triplets, we show that the entire Lagrangian is invariant under a
PQ-like symmetry but no axion is produced since an U(1) subgroup remains
unbroken. Although in this case the strong CP problem can still be solved, the
solution is largely disfavored since three quark states are left massless to
all orders in perturbation theory. The addition of a third scalar triplet
removes the massless quark states but the resulting axion is visible. In order
to become realistic the model must be extended to account for massive quarks
and invisible axion. We show that the addition of a scalar singlet together
with a Z_N discrete gauge symmetry can successfully accomplish these tasks and
protect the axion field against quantum gravitational effects. To make sure
that the protecting discrete gauge symmetry is anomaly free we use a discrete
version of the Green-Schwarz mechanism.Comment: 18 pages, 1 figure, 3 table
A Pyramid Scheme for Particle Physics
We introduce a new model, the Pyramid Scheme, of direct mediation of SUSY
breaking, which is compatible with the idea of Cosmological SUSY Breaking
(CSB). It uses the trinification scheme of grand unification and avoids
problems with Landau poles in standard model gauge couplings. It also avoids
problems, which have recently come to light, associated with rapid stellar
cooling due to emission of the pseudo Nambu-Goldstone Boson (PNGB) of
spontaneously broken hidden sector baryon number. With a certain pattern of
R-symmetry breaking masses, a pattern more or less required by CSB, the Pyramid
Scheme leads to a dark matter candidate that decays predominantly into leptons,
with cross sections compatible with a variety of recent observations. The dark
matter particle is not a thermal WIMP but a particle with new strong
interactions, produced in the late decay of some other scalar, perhaps the
superpartner of the QCD axion, with a reheat temperature in the TeV range. This
is compatible with a variety of scenarios for baryogenesis, including some
novel ones which exploit specific features of the Pyramid Scheme.Comment: JHEP Latex, 32 pages, 1 figur
Nonsingular Lagrangians for Two Dimensional Black Holes
We introduce a large class of modifications of the standard lagrangian for
two dimensional dilaton gravity, whose general solutions are nonsingular black
holes. A subclass of these lagrangians have extremal solutions which are
nonsingular analogues of the extremal Reissner-Nordstrom spacetime. It is
possible that quantum deformations of these extremal solutions are the endpoint
of Hawking evaporation when the models are coupled to matter, and that the
resulting evolution may be studied entirely within the framework of the
semiclassical approximation. Numerical work to verify this conjecture is in
progress. We point out however that the solutions with non-negative mass always
contain Cauchy horizons, and may be sensitive to small perturbations.Comment: 27 pages, three figures, RU-92-61. (Replaced version contains some
corrections to incorrect equations. The zero temperature extremal geometry
(the conjectured end-point of the Hawking evaporation) is not as stated in
the previous version, but rather is a nonsingular analogue of the zero
temperature Reissner-Nordstrom space-time.
From 'nothing' to inflation and back again
A procedure for solving Wheeler-DeWitt equation in Euclidean region,
following step by step the construction of tunneling wave function in
nonrelativistic quantum mechanics by Banks, Bender and Wu, is proposed.
Solutions for a universe satisfying no-boundary condition and a universe
created from 'nothing' are compared to the corresponding solutions for a
particle in a two-dimensional potential well, and effects of indefiniteness of
metric and zero energy in Wheeler-DeWitt equation are discussed.Comment: 8 pages, presented at the conference Relativity and Gravitation, 100
years after Einstein in Prague (Prague 2012
Quantum Moduli Spaces of String Theories
Generically, string models with supersymmetry are not expected to have
moduli beyond perturbation theory; stringy non-perturbative effects as well as
low energy field-theoretic phenomena such as gluino condensation will lift any
flat directions. In this note, we describe models where some subspace of the
moduli space survives non-perturbatively. Discrete symmetries forbid any
inherently stringy effects, and dynamical considerations control the
field-theoretic effects. The surviving subspace is a space of high symmetry;
the system is attracted to this subspace by a potential which we compute.
Models of this type may be useful for considerations of duality and raise
troubling cosmological questions about string theory. Our considerations also
suggest a mechanism for fixing the expectation value of the dilaton.Comment: 26 pages; uses harvmac. Footnote re fixing dilaton adde
The Cosmological Moduli Problem, Supersymmetry Breaking and Stability in Postinflationary Cosmology
A survey of solutions to the cosmological moduli problem in string theory.
The only extant proposal which may work is Intermediate Scale Inflation as
proposed by Randall and Thomas. Supersymmetry preserving dynamics which could
give large masses to the moduli is strongly constrained by cosmology and
requires the existence of string vacuum states possessing properties different
from those of any known vacuuum. Such a mechanism cannot give mass to the
dilaton unless there are cancellations between different exponentially small
contributions to the superpotential. Our investigation also shows that
stationary points of the effective potential with negative vacuum energy do not
correspond to stationary solutions of the equations of postinflationary
cosmology. This suggests that supersymmetry breaking is a requirement for a
successful inflationary cosmology.Comment: harvma
Model validation for a noninvasive arterial stenosis detection problem
Copyright @ 2013 American Institute of Mathematical SciencesA current thrust in medical research is the development of a non-invasive method for detection, localization, and characterization of an arterial stenosis (a blockage or partial blockage in an artery). A method has been proposed to detect shear waves in the chest cavity which have been generated by disturbances in the blood flow resulting from a stenosis. In order to develop this methodology further, we use both one-dimensional pressure and shear wave experimental data from novel acoustic phantoms to validate corresponding viscoelastic mathematical models, which were developed in a concept paper [8] and refined herein. We estimate model parameters which give a good fit (in a sense to be precisely defined) to the experimental data, and use asymptotic error theory to provide confidence intervals for parameter estimates. Finally, since a robust error model is necessary for accurate parameter estimates and confidence analysis, we include a comparison of absolute and relative models for measurement error.The National Institute of Allergy and Infectious Diseases, the Air Force Office of Scientific Research, the Deopartment of Education and the Engineering and Physical Sciences Research Council (EPSRC)
Measurements of the absolute value of the penetration depth in high- superconductors using a tunnel diode resonator
A method is presented to measure the absolute value of the London penetration
depth, , from the frequency shift of a resonator. The technique
involves coating a high- superconductor (HTSC) with film of low - Tc
material of known thickness and penetration depth. The method is applied to
measure London penetration depth in YBa2Cu3O{7-\delta} (YBCO)
Bi2Sr2CaCu2O{8+\delta} (BSCCO) and Pr{1.85}Ce{0.15}CuO{4-\delta}\lambda (0)\lambda \approx 2790$ \AA, reported for the first
time.Comment: RevTex 4 (beta 4). 4 pages, 4 EPS figures. Submitted to Appl. Phys.
Let
- …