66 research outputs found

    Liposomes in Biology and Medicine

    Full text link
    Drug delivery systems (DDS) have become important tools for the specific delivery of a large number of drug molecules. Since their discovery in the 1960s liposomes were recognized as models to study biological membranes and as versatile DDS of both hydrophilic and lipophilic molecules. Liposomes--nanosized unilamellar phospholipid bilayer vesicles--undoubtedly represent the most extensively studied and advanced drug delivery vehicles. After a long period of research and development efforts, liposome-formulated drugs have now entered the clinics to treat cancer and systemic or local fungal infections, mainly because they are biologically inert and biocompatible and practically do not cause unwanted toxic or antigenic reactions. A novel, up-coming and promising therapy approach for the treatment of solid tumors is the depletion of macrophages, particularly tumor associated macrophages with bisphosphonate-containing liposomes. In the advent of the use of genetic material as therapeutic molecules the development of delivery systems to target such novel drug molecules to cells or to target organs becomes increasingly important. Liposomes, in particular lipid-DNA complexes termed lipoplexes, compete successfully with viral gene transfection systems in this field of application. Future DDS will mostly be based on protein, peptide and DNA therapeutics and their next generation analogs and derivatives. Due to their versatility and vast body of known properties liposome-based formulations will continue to occupy a leading role among the large selection of emerging DDS

    The influence of HLA class I alleles and heterozygosity on the outcome of human T cell lymphotropic virus type I infection

    No full text
    The inflammatory disease human T cell lymphotropic virus type I (HTLV-I)-associated myelopathy (HAM/TSP) occurs in only 1–2% of HTLV-I-infected individuals and is associated with a high provirus load of HTLV-I. We hypothesize that a person’s risk of developing HAM/TSP depends upon the efficiency of their immune response to the virus, which differs between individuals because of polymorphism in genes that influence this response. Previously we showed that the possession of HLA-A*02 was associated with a lower risk of HAM/TSP, and with a lower provirus load in healthy carriers of HTLV-I. However, HLA-A*02 did not account for all the observed difference in the risk of HAM/TSP. Here we present evidence, in the same study population in Japan, that HLA-Cw*08 was also associated with disease protection (probability value, two-tailed test = 0.002) and with a lower proviral load in healthy carriers. Possession of the A*02 and/or Cw*08 genes prevented 36% of potential HAM/TSP cases. In contrast, HLA-B*5401 was associated with a higher susceptibility to HAM/TSP (probability value, two-tailed test = 0.0003) and with a higher provirus load in HAM/TSP patients. At a given provirus load, B*5401 appeared to increase the risk of disease. The fraction of HAM/TSP cases attributable to B*5401 was 17%. Furthermore, individuals who were heterozygous at all three HLA class I loci have a lower HTLV-I provirus load than those who were homozygous at one or more loci. These results are consistent with the proposal that a strong class I-restricted CTL response to HTLV-I reduces the proviral load and hence the risk of disease
    corecore