10 research outputs found

    Risperidone oral disintegrating mini-tablets: A robust-product for pediatrics

    Get PDF
    This study was aimed at developing risperidone oral disintegrating mini-tablets (OD-mini-tablets) as age-appropriate formulations and to assess their suitability for infants and pediatric use. An experimental Box-Behnken design was applied to assure high quality of the OD-mini-tablets and reduce product variability. The design was employed to understand the influence of the critical excipient combinations on the production of OD-mini-tablets and thus guarantee the feasibility of obtaining products with dosage form uniformity. The variables selected were mannitol percent in Avicel (X1), swelling pressure of the superdisintegrant (X2), and the surface area of Aerosil as a glidant (X3). Risperidone-excipient compatibilities were investigated using FTIR and the spectra did not display any interaction. Fifteen formulations were prepared and evaluated for pre- and post-compression characteristics. The prepared OD-mini-tablet batches were also assessed for disintegration in simulated salivary fluid (SSF, pH 6.2) and in reconstituted skimmed milk. The optimized formula fulfilled the requirements for crushing strength of 5 kN with minimal friability, disintegration times of 8.4 and 53.7 s in SSF and skimmed milk, respectively. This study therefore proposes risperidone OD-mini-tablet formula having robust mechanical properties, uniform and precise dosing of medication with short disintegration time suitable for pediatric use

    Combined strategy for suppressing breast carcinoma MCF-7 cell lines by loading simvastatin on alpha lipoic acid nanoparticles

    No full text
    <p><b>Background:</b> Augmentation of simvastatin (SMV) cytotoxicity in breast carcinoma cell lines MCF-7, by: improvement of cellular uptake and loading on alpha lipoic acid (ALA).</p> <p><b>Methods:</b> In this study, SMV was loaded on ALA nanoparticles and characterized for surface morphology, SMV entrapment efficiency percent (%EE), zeta potential and release profile. Cellular viability, morphology and uptake and DNA fragmentations were analyzed as a hallmark of cellular apoptosis.</p> <p><b>Results:</b> TEM images demonstrated spherical nanoparticles with particle size 104.7 ± 5.5 nm, SMV %EE was 95.8 ± 2.1% with a zeta potential – 23.6 ± 5.4 mV, and release properties were significantly enhanced. IC<sub>50</sub> was decreased to 22.2 ± 2.4 µM while raw SMV was 49.3 ± 6.6 µM. Cellular uptake of SMV-ALA nanoparticles was increased by about 3- and 2-folds after 2 and 4 h, respectively. DNA fragments confirmed the apoptosis property of ALA, which is associated with SMV cytotoxicity.</p> <p><b>Conclusion:</b> This study suggests evidence that SMV loaded on ALA nanoparticles increases the MCF-7 cellular uptake and cytotoxic effects induced by SMV as revealed by significantly enhanced cell death rates in MCF-7 cells. These findings demonstrate that ALA induces cell death, which makes the combination a candidate for tumor therapy.</p

    Risperidone oral disintegrating mini-tablets: A robust-product for pediatrics

    No full text
    This study was aimed at developing risperidone oral disintegrating mini-tablets (OD-mini-tablets) as age-appropriate formulations and to assess their suitability for infants and pediatric use. An experimental Box-Behnken design was applied to assure high quality of the OD-mini-tablets and reduce product variability. The design was employed to understand the influence of the critical excipient combinations on the production of OD-mini-tablets and thus guarantee the feasibility of obtaining products with dosage form uniformity. The variables selected were mannitol percent in Avicel (X1), swelling pressure of the superdisintegrant (X2), and the surface area of Aerosil as a glidant (X3). Risperidone-excipient compatibilities were investigated using FTIR and the spectra did not display any interaction. Fifteen formulations were prepared and evaluated for preand post-compression characteristics. The prepared ODmini- tablet batches were also assessed for disintegration in simulated salivary fluid (SSF, pH 6.2) and in reconstituted skimmed milk. The optimized formula fulfilled the requirements for crushing strength of 5 kN with minimal friability, disintegration times of 8.4 and 53.7 s in SSF and skimmed milk, respectively. This study therefore proposes the risperidone OD-mini-tablet formula having robust mechanical properties, uniform and precise dosing of medication with short disintegration time suitable for pediatric use
    corecore