7 research outputs found

    Chronic excitotoxic lesion of the dorsal raphe nucleus induces sodium appetite

    No full text
    We determined if the dorsal raphe nucleus (DRN) exerts tonic control of basal and stimulated sodium and water intake. Male Wistar rats weighing 300-350 g were microinjected with phosphate buffer (PB-DRN, N = 11) or 1 µg/0.2 µl, in a single dose, ibotenic acid (IBO-DRN, N = 9 to 10) through a guide cannula into the DRN and were observed for 21 days in order to measure basal sodium appetite and water intake and in the following situations: furosemide-induced sodium depletion (20 mg/kg, sc, 24 h before the experiment) and a low dose of dietary captopril (1 mg/g chow). From the 6th day after ibotenic acid injection IBO-DRN rats showed an increase in sodium appetite (12.0 ± 2.3 to 22.3 ± 4.6 ml 0.3 M NaCl intake) whereas PB-DRN did not exceed 2 ml (P < 0.001). Water intake was comparable in both groups. In addition to a higher dipsogenic response, sodium-depleted IBO-DRN animals displayed an increase of 0.3 M NaCl intake compared to PB-DRN (37.4 ± 3.8 vs 21.6 ± 3.9 ml 300 min after fluid offer, P < 0.001). Captopril added to chow caused an increase of 0.3 M NaCl intake during the first 2 days (IBO-DRN, 33.8 ± 4.3 and 32.5 ± 3.4 ml on day 1 and day 2, respectively, vs 20.2 ± 2.8 ml on day 0, P < 0.001). These data support the view that DRN, probably via ascending serotonergic system, tonically modulates sodium appetite under basal and sodium depletion conditions and/or after an increase in peripheral or brain angiotensin II

    Influence of serotonergic transmission and postsynaptic 5-HT2C action on the feeding behavior of Coturnix japonica (Galliformes: Aves)

    No full text
    We investigated the role of 5-HT2C receptors and serotonergic transmission in the feeding behavior control of quails. Administration of serotonin releaser, fenfluramine (FEN) and 5-HT2C agonists, mCPP and MK212, 1.0 and 3.3 mg/Kg induced significant inhibition of food intake in previously fasted fowls (0.71 ± 0.18 g and 0.47 ± 0.2 g; 0.49 ± 0.22 g and 0.48 ± 0.29 g; 0.82 ± 0.13 g and 0.71 ± 0.16 g, respectively). Control groups ranged from 2.89 ± 0.21 g to 2.97 ± 0.22 g, 60 min after reintroduction of food, P < 0.0001). Similar results were obtained with normally fed quails. Both serotonin releaser and 5-HT2C agonists, in a 3.3 mg/Kg dose, induced hypophagy (FEN, 0.78 ± 0.08 g; mCPP, 0.89 ± 0.07 g; MK212, 1.25 ± 0.17 g vs. controls, 2.05 ± 0.12 g, 120 min after food was presented, P < 0.0001 to P < 0.01). Previous administration of 5-HT2C antagonist, LY53857 (5.0 mg/Kg) blocked the hypophagic response induced by 5-HT2C agonists 60 min after food was reintroduced. Current data show a modulatory role of serotonin release and postsynaptic 5-HT2C receptors in the feeding behavior of quails

    Effect of L-5-Hydroxytryptophan on drinking behavior in Coturnix japonica (Temminck and Schlegel, 1849) (Galliformes: Aves): involvement of renin-angiotensin system

    No full text
    The purpose of this study was to explore the role of L-5-hydroxytryptophan (L-HTP) and its relationship with the renin-angiotensin system (RAS) on the drinking behavior in Japanese quails. Normally-hydrated quails that received injections of L-HTP (12.5; 25 and 50 mg.kg-1) by the intracoelomic route (ic) expressed an increase in water intake, which was inhibited by captopril, an angiotensin converting enzyme (ACE) inhibitor. In addition, captopril also induced such a response in birds under previous fluid deprivation. High doses of captopril (35-70 mg.kg-1, sc) in normally-hydrated quails decreased the spontaneous water intake while low doses of captopril (2-5 mg.kg-1, sc) did not prompt water intake after L-HTP administration. Losartan, an AT1 receptor antagonist in mammals, did not change the water intake levels in normally-hydrated or water-deprivated birds. Serotonin (5-HT) injections did not provoke its known dipsogenic response

    Role of the serotoninergic system in the sodium appetite control

    No full text
    The present article reviews the role of the serotoninergic system in the regulation of the sodium appetite. Data from the peripheral and icv administration of serotoninergic (5-HTergic) agents showed the participation of 5-HT2/3 receptors in the modulation of sodium appetite. These observations were extended with the studies carried out after brain serotonin depletion, lesions of DRN and during blockade of 5-HT2A/2C receptors in lateral parabrachial nucleus (LPBN). Brain serotonin depletion and lesions of DRN increased the sodium appetite response, in basal conditions, after sodium depletion and hypovolemia or after beta-adrenergic stimulation as well. These observations raised the hypothesis that the suppression of ascending pathways from the DRN, possibly, 5-HTergic fibers, modifies the angiotensinergic or sodium sensing mechanisms of the subfornical organ involved in the control of the sodium appetite. 5-HTergic blockade in LPBN induced to similar results, particularly those regarded to the natriorexigenic response evoked by volume depletion or increase of the hypertonic saline ingestion induced by brain angiotensinergic stimulation. In conclusion, many evidences lead to acceptation of an integrated participation resulting of an interaction, between DRN and LPBN, for the sodium appetite control.<br>Este artigo revisa o papel do sistema serotoninérgico no controle do apetite ao sódio. Dados derivados da administração periférica e icv de agentes serotoninérgicos demonstraram a participação de receptores 5-HT2/3 na modulação do apetite ao sódio. Estas observações foram estendidas com os estudos realizados após a depleção cerebral de serotonina, lesões do NDR e durante o bloqueio 5-HT2A/2C no núcleo parabraquial lateral (NPBL). A depleção cerebral de serotonina e as lesões do NDR aumentaram o apetite ao sódio, em condições basais, após depleção de sódio, durante a hipovolemia ou após a estimulação beta-adrenérgica. Estas evidências suscitaram a hipótese de que a supressão de vias ascendentes do NDR, possivelmente 5-HT, alteram os mecanismos angiotensinérgicos e a atividade dos sensores de sódio do órgão subfornicial envolvidos no controle do apetite ao sódio. O bloqueio serotoninérgico no NPBL induziu a resultados similares, particularmente aqueles relacionados com a resposta natriorexigênica provocada pela depleção de volume ou o aumento da ingestão de salina hipertônica induzida pela estimulação angiotensinérgica cerebral. Em resumo, as evidências convergem para a admissão de uma participação integrada resultante da interação recíproca entre NDR e NPBL objetivando controlar o apetite ao sódio
    corecore