4 research outputs found

    Follow up of GW170817 and its electromagnetic counterpart by Australian-led observing programmes

    No full text
    The discovery of the first electromagnetic counterpart to a gravitational wave signal has generated follow-up observations by over 50 facilities world-wide, ushering in the new era of multi-messenger astronomy. In this paper, we present follow-up observations of the gravitational wave event GW170817 and its electromagnetic counterpart SSS17a/DLT17ck (IAU label AT2017gfo) by 14 Australian telescopes and partner observatories as part of Australian-based and Australian-led research programs. We report early- to late-time multi-wavelength observations, including optical imaging and spectroscopy, mid-infrared imaging, radio imaging, and searches for fast radio bursts. Our optical spectra reveal that the transient source emission cooled from approximately 6 400 K to 2 100 K over a 7-d period and produced no significant optical emission lines. The spectral profiles, cooling rate, and photometric light curves are consistent with the expected outburst and subsequent processes of a binary neutron star merger. Star formation in the host galaxy probably ceased at least a Gyr ago, although there is evidence for a galaxy merger. Binary pulsars with short (100 Myr) decay times are therefore unlikely progenitors, but pulsars like PSR B1534+12 with its 2.7 Gyr coalescence time could produce such a merger. The displacement (~2.2 kpc) of the binary star system from the centre of the main galaxy is not unusual for stars in the host galaxy or stars originating in the merging galaxy, and therefore any constraints on the kick velocity imparted to the progenitor are poor

    Developments in breeding cereals for organic agriculture

    Get PDF
    The need for increased sustainability of performance in cereal varieties, particularly in organic agriculture (OA), is limited by the lack of varieties adapted to organic conditions. Here, the needs for breeding are reviewed in the context of three major marketing types, global, regional, local, in European OA. Currently, the effort is determined, partly, by the outcomes from trials that compare varieties under OA and CA (conventional agriculture) conditions. The differences are sufficiently large and important to warrant an increase in appropriate breeding. The wide range of environments within OA and between years, underlines the need to try to select for specific adaptation in target environments. The difficulty of doing so can be helped by decentralised breeding with farmer participation and the use of crops buffered by variety mixtures or populations. Varieties for OA need efficient nutrient uptake and use and weed competition. These and other characters need to be considered in relation to the OA cropping system over the whole rotation. Positive interactions are needed, such as early crop vigour for nutrient uptake, weedcompetition and disease resistance. Incorporation of all characteristics into the crop can be helped by diversification within the crop, allowing complementation and compensation among plants. Although the problems of breeding cereals for organic farming systems are large, there is encouraging progress. This lies in applications of ecology to organic crop production, innovations in plant sciences, and the realisation that such progress is central to both OA and CA, because of climate change and the increasing costs of fossil fuels

    Developments in breeding cereals for organic agriculture

    No full text
    corecore