1,585 research outputs found

    Optimized Discretization of Sources Imaged in Heavy-Ion Reactions

    Get PDF
    We develop the new method of optimized discretization for imaging the relative source from two particle correlation functions. In this method, the source resolution depends on the relative particle separation and is adjusted to available data and their errors. We test the method by restoring assumed pp sources and then apply the method to pp and IMF data. In reactions below 100 MeV/nucleon, significant portions of the sources extend to large distances (r > 20 fm). The results from the imaging show the inadequacy of common Gaussian source-parametrizations. We establish a simple relation between the height of the pp correlation function and the source value at short distances, and between the height and the proton freeze-out phase-space density.Comment: 36 pages (inc. 9 figures), RevTeX, uses epsf.sty. Submitted to Phys. Rev.

    Logical and computational aspects of programming with sets/bags/lists

    Full text link

    Business cycles, international trade and capital flows: Evidence from Latin America

    Get PDF
    This paper adopts a flexible framework to assess both short- and long-run business cycle linkages between six Latin American (LA) countries and the four largest economies in the world (namely the US, the Euro area, Japan and China) over the period 1980:I-2011:IV. The result indicate that within the LA region there are considerable differences between countries, success stories coexisting with extremely vulnerable economies. They also show that the LA region as a whole is largely dependent on external developments, especially in the years after the great recession of 2008 and 2009. The trade channel appears to be the most important source of business cycle comovement, whilst capital flows are found to have a limited role, especially in the very short run

    Inversion of Randomly Corrugated Surfaces Structure from Atom Scattering Data

    Full text link
    The Sudden Approximation is applied to invert structural data on randomly corrugated surfaces from inert atom scattering intensities. Several expressions relating experimental observables to surface statistical features are derived. The results suggest that atom (and in particular He) scattering can be used profitably to study hitherto unexplored forms of complex surface disorder.Comment: 10 pages, no figures. Related papers available at http://neon.cchem.berkeley.edu/~dan

    New Interstellar Dust Models Consistent with Extinction, Emission, and Abundance Constraints

    Full text link
    We present new interstellar dust models which have been derived by simultaneously fitting the far-ultraviolet to near-infrared extinction, the diffuse infrared (IR) emission and, unlike previous models, the elemental abundance constraints on the dust for different interstellar medium abundances, including solar, F and G star, and B star abundances. The fitting problem is a typical ill-posed inversion problem, in which the grain size distribution is the unknown, which we solve by using the method of regularization. The dust model contains various components: PAHs, bare silicate, graphite, and amorphous carbon particles, as well as composite particles containing silicate, organic refractory material, water ice, and voids. The optical properties of these components were calculated using physical optical constants. As a special case, we reproduce the Li & Draine (2001) results, however their model requires an excessive amount of silicon, magnesium, and iron to be locked up in dust: about 50 ppm (atoms per million of H atoms), significantly more than the upper limit imposed by solar abundances of these elements, about 34, 35, and 28 ppm, respectively. A major conclusion of this paper is that there is no unique interstellar dust model that simultaneously fits the observed extinction, diffuse IR emission, and abundances constraints.Comment: 70 pages, 23 figures, accepted for publication in the Astrophysical Journal Supplemen

    Markov Chain Methods For Analyzing Complex Transport Networks

    Full text link
    We have developed a steady state theory of complex transport networks used to model the flow of commodity, information, viruses, opinions, or traffic. Our approach is based on the use of the Markov chains defined on the graph representations of transport networks allowing for the effective network design, network performance evaluation, embedding, partitioning, and network fault tolerance analysis. Random walks embed graphs into Euclidean space in which distances and angles acquire a clear statistical interpretation. Being defined on the dual graph representations of transport networks random walks describe the equilibrium configurations of not random commodity flows on primary graphs. This theory unifies many network concepts into one framework and can also be elegantly extended to describe networks represented by directed graphs and multiple interacting networks.Comment: 26 pages, 4 figure

    Multiwavelength Observations of the Blazar Mrk 421 in December 2002 and January 2003

    Get PDF
    We report on a multiwavelength campaign on the TeV gamma-ray blazar Markarian (Mrk) 421 performed during December 2002 and January 2003. These target of opportunity observations were initiated by the detection of X-ray and TeV gamma-ray flares with the All Sky Monitor (ASM) on board the Rossi X-ray Timing Explorer (RXTE) and the 10 m Whipple gamma-ray telescope.The campaign included observational coverage in the radio (University of Michigan Radio Astronomy Observatory), optical (Boltwood, La Palma KVA 0.6m, WIYN 0.9m), X-ray (RXTE pointed telescopes), and TeV gamma-ray (Whipple and HEGRA) bands. At TeV energies, the observations revealed several flares at intermediate flux levels, peaking between 1 and 1.5 times the flux from the Crab Nebula. While the time averaged spectrum can be fitted with a single power law of photon index Gamma =2.8, we find some evidence for spectral variability. Confirming earlier results, the campaign reveals a rather loose correlation between the X-ray and TeV gamma-ray fluxes. In one case, a very strong X-ray flare is not accompanied by a comparable TeV gamma-ray flare. Although the source flux was variable in the optical and radio bands, the sparse sampling of the optical and radio light curves does not allow us to study the correlation properties in detail. We present a simple analysis of the data with a synchrotron-self Compton model, emphasizing that models with very high Doppler factors and low magnetic fields can describe the data.Comment: Accepted for publication in the Astrophysical Journa
    corecore