6 research outputs found

    Unimodal optimization using a genetic-programming-based method with periodic boundary conditions

    Get PDF
    This article describes a new genetic-programming-based optimization method using a multi-gene approach along with a niching strategy and periodic domain constraints. The method is referred to as Niching MG-PMA, where MG refers to multi-gene and PMA to parameter mapping approach. Although it was designed to be a multimodal optimization method, recent tests have revealed its suitability for unimodal optimization. The definition of Niching MG-PMA is provided in a detailed fashion, along with an in-depth explanation of two novelties in our implementation: the feedback of initial parameters and the domain constraints using periodic boundary conditions. These ideas can be potentially useful for other optimization techniques. The method is tested on the basis of the CEC’2015 benchmark functions. Statistical analysis shows that Niching MG-PMA performs similarly to the winners of the competition even without any parametrization towards the benchmark, indicating that the method is robust and applicable to a wide range of problems

    The isobutylene-isobutane alkylation process in liquid HF revisited

    No full text
    Details on the mechanism of HF catalyzed isobutylene-isobutane alkylation were investigated. On the basis of available experimental data and high-level quantum chemical calculations, a detailed reaction mechanism is proposed taking into account solvation effects of the medium. On the basis of our computational results, we explain why the density of the liquid media and stirring rates are the most important parameters to achieve maximum yield of alkylate, in agreement with experimental findings. The ab initio Car-Parrinello molecular dynamics calculations show that isobutylene is irreversibly protonated in the liquid HF medium at higher densities, leading to the ion pair formation, which is shown to be a minimum on the potential energy surface after optimization using periodic boundary conditions. The HF medium solvates preferentially the fluoride anion, which is found as solvated [FHF](-) or solvated F(-)center dot(HF)(3). On the other hand, the tert-butyl cation is weakly solvated, where the closest HF molecules appear at a distance of about 2.9 angstrom with the fluorine termination of an HF chain
    corecore