10 research outputs found

    Is analysing the nitrogen use at the plant canopy level a matter of choosing the right optimization criterion?

    Get PDF
    Optimization theory in combination with canopy modeling is potentially a powerful tool for evaluating the adaptive significance of photosynthesis-related plant traits. Yet its successful application has been hampered by a lack of agreement on the appropriate optimization criterion. Here we review how models based on different types of optimization criteria have been used to analyze traits—particularly N reallocation and leaf area indices—that determine photosynthetic nitrogen-use efficiency at the canopy level. By far the most commonly used approach is static-plant simple optimization (SSO). Static-plant simple optimization makes two assumptions: (1) plant traits are considered to be optimal when they maximize whole-stand daily photosynthesis, ignoring competitive interactions between individuals; (2) it assumes static plants, ignoring canopy dynamics (production and loss of leaves, and the reallocation and uptake of nitrogen) and the respiration of nonphotosynthetic tissue. Recent studies have addressed either the former problem through the application of evolutionary game theory (EGT) or the latter by applying dynamic-plant simple optimization (DSO), and have made considerable progress in our understanding of plant photosynthetic traits. However, we argue that future model studies should focus on combining these two approaches. We also point out that field observations can fit predictions from two models based on very different optimization criteria. In order to enhance our understanding of the adaptive significance of photosynthesis-related plant traits, there is thus an urgent need for experiments that test underlying optimization criteria and competing hypotheses about underlying mechanisms of optimization

    Behavioral and morphological responses of an insect herbivore to low nutrient quality are inhibited by plant chemical defenses

    No full text
    Animals have several strategies to contend with nutritionally poor diets, including compensatory consumption and enhanced food utilization efficiencies. Plants produce a diversity of defense compounds that affect the ability of herbivores to utilize these strategies in response to variation in food nutritional quality. Little is known, however, about effects of allelochemicals on herbivores utilizing integrated behavioral and morphological responses to reduced food quality. Our objectives were to (1) examine how variation in diet nutritional quality influences compensatory responses of a generalist insect herbivore, and (2) determine how plant defenses affect these processes. Gypsy moth (Lymantria dispar) larvae were administered one of nine combinations of diet having low, moderate, or high nutritional quality and 0, 2, or 4 % purified aspen (Populus tremuloides) salicinoids. We quantified larval growth, consumption, frass production, and biomass allocation to midgut tissue over a 4-day bioassay. In the absence of salicinoids, larvae compensated for reduced nutritional quality and maintained similar growth across all diets through increased consumption, altered midgut biomass allocation, and improved processing efficiencies. Dietary salicinoids reduced larval consumption, midgut biomass allocation, digestive efficiencies, and growth at all nutritional levels, but the effect size was more pronounced when larvae were fed nutritionally suboptimal diets. Our findings demonstrate that integrated behavioral and morphological compensatory responses to reduced food quality are affected by plant defenses, ultimately limiting compensatory responses and reducing larval performance
    corecore