9 research outputs found

    Permo-Carboniferous granitoids with Jurassic high temperature metamorphism in Central Pontides, Northern Turkey

    No full text
    In the northern part of the Central Pontides (N Turkey) there are different metamorphic rocks exposed, notably the Devrekani metamorphic rocks. Here, upper amphibolite-lower granulite facies metamorphic rocks contain predominantly paragneiss, orthogneiss and metacarbonate, and to a lesser extent, amphibolite and quartzite, with cross-cutting aplite, pegmatite and granite veins. This is the first report of these rocks and includes new data on the petrochemistry, geochronology and metamorphic evolution of the Devrekani orthogneisses from the Central Pontides. The orthogneisses show five different mineral parageneses with the characteristic mineral assemblage quartz + K-feldspar + plagioclase + biotite ± hornblende ± opaque (± ilmenite and ± magnetite), and accessory minerals (zircon, sphene and apatite). These metamorphic rocks exhibit generally granoblastic, lepidogranoblastic and nematolepidogranoblastic with locally migmatitic and relic micrographic textures. They have well-developed centimeter-spaced gneissic banding and display gneissose structure with symmetric, asymmetric and irregular folds. The petrographic features, mineralogical assemblages and weak migmatization reflect high temperature conditions. Thermometric calculations in the orthogneisses indicate metamorphic temperatures reached 744 ± 33 °C. Field relations, petrography and petrochemistry suggest that the orthogneisses have predominantly granodioritic and some granitic protoliths, that show features of I-type, medium to high-potassic calc-alkaline volcanic arc granitoids. The orthogneisses have high contents of LILEs and low contents of HFSEs with negative Nb and Ti anomalies, which are typical of subduction-related magmas. The orthogneisses also show significant LREE enrichment relative to HREE with negative Eu anomalies (EuN/Eu* = 0.33–1.07) with LaN/LuN = 6.98–20.47 values. Based on U-Pb zircon dating data, the protoliths are related to Permo-Carboniferous (316–252 Ma) magmatism. It is likely that peak metamorphism took place during the Jurassic as reflected by the U-Pb zircon ages (199–158 Ma) and also 40Ar/39Ar from hornblende/biotite (163–152 Ma). The four biotite 40Ar/39Ar average ages from the rock samples are ca. 156 Ma, suggesting that the metamorphic rocks cooled to 350–400 °C at ca. 156 Ma. Conclusively, the Devrekani metamorphic rocks can be ascribed as products of Permo-Carboniferous continental arc magmatism overprinted by Jurassic metamorphism in the northern Central Pontides

    Implications of U–Pb and Lu–Hf isotopic analysis of detrital zircons for the depositional age, provenance and tectonic setting of the Permian–Triassic Palaeotethyan Karakaya Complex, NW Turkey

    No full text
    New zircon U-Pb age data, combined with Lu-Hf isotopic data, are presented here for sandstones of mainly arkosic composition from the Permian-Triassic Karakaya Complex. Predominantly, Carboniferous, Triassic and Devonian zircon age groups are recognised, most of which have a Late Triassic (Carnian-Norian) maximum depositional age. Carboniferous- and Devonian-aged zircon populations exhibit intermediate epsilon (Hf(t)) values (-11 to +2), consistent with formation in a continental margin arc setting where juvenile mantle-derived magma mixed with (recycled) old crust of Palaeoproterozoic Hf model age. In contrast, the Triassic-aged zircon population exhibits higher epsilon (Hf(t)) values (-5 to +4), consistent with mixing of juvenile mantle-derived melts with (recycled) old crust of Neoproterozoic Hf model age. Potential igneous source rocks for the sandstones of the Karakaya Complex exist in the Devonian and Carboniferous granitic rocks of the Sakarya continental basement to the north. Their epsilon (Hf(t)) and corresponding model ages are nearly identical to the age-equivalent zircon populations within the Karakaya Complex sandstones. However, the Triassic granitic rocks of the Sakarya continental crust differ significantly in epsilon (Hf(t)) and corresponding model age from the sandstones of the Karakaya Complex. Late Triassic sandstones from the Tauride continental unit to the south lack the dominant Late Palaeozoic and Triassic zircon populations of the Karakaya Complex sandstones. Triassic granitic bodies and intermediate-composition extrusive rocks in the Tauride continental unit also differ in epsilon (Hf(t)) and corresponding Hf model ages from the Karakaya Complex sandstones. In addition, Late Triassic sandstones of the Kocaeli Triassic unit (A degrees stanbul Terrane) in the north differ strongly from the Karakaya Complex sandstones in zircon population ages and epsilon (Hf(t)). In the regional context, the new zircon age and lutetium-hafnium isotopic data are consistent with derivation of the Late Triassic Karakaya Complex sandstones from a Late Palaeozoic-Triassic continental margin arc located somewhere along the southern margin of Eurasia, although its exact position cannot be pinpointed at present owing to lack of suitable outcrop and comparable isotopic data

    The phanerozoic palaeotectonics of Turkey. Part I: an inventory

    No full text
    corecore