389 research outputs found

    Cytotoxic effects of GM1 ganglioside and amyloid Ξ²-peptide on mouse embryonic neural stem cells

    Get PDF
    AD (Alzheimer’s disease) is a neurodegenerative disease and the most common form of dementia. One of the pathological hallmarks of AD is the aggregation of extracellular AΞ²s (amyloid Ξ²-peptides) in senile plaques in the brain. The process could be initiated by seeding provided by an interaction between GM1 ganglioside and AΞ²s. Several reports have documented the bifunctional roles of AΞ²s in NSCs (neural stem cells), but the precise effects of GM1 and AΞ² on NSCs have not yet been clarified. We evaluated the effect of GM1 and AΞ²-(1–40) on mouse NECs (neuroepithelial cells), which are known to be rich in NSCs. No change of cell number was detected in NECs cultured in the presence of either GM1 or AΞ²-(1–40). On the contrary, a decreased number of NECs were cultured in the presence of a combination of GM1 and AΞ²-(1–40). The exogenously added GM1 and AΞ²-(1–40) were confirmed to incorporate into NECs. The Ras–MAPK (mitogen-activated protein kinase) pathway, important for cell proliferation, was intact in NECs simultaneously treated with GM1 and AΞ²-(1–40), but caspase 3 was activated. NECs treated with GM1 and AΞ²-(1–40) were positive in the TUNEL (terminal deoxynucleotidyl transferase-mediated dUTP nick-end labelling) assay, an indicator of cell death. It was found that GM1 and AΞ²-(1–40) interacted in the presence of cholesterol and sphingomyelin, components of cell surface microdomains. The cytotoxic effect was found also in NSCs prepared via neurospheres. These results indicate that AΞ²-(1–40) and GM1 co-operatively exert a cytotoxic effect on NSCs, likely via incorporation into NEC membranes, where they form a complex for the activation of cell death signalling

    CSF levels of glutamine synthetase and GFAP to explore astrocytic damage in seronegative NMOSD

    Get PDF
    OBJECTIVE: To explore levels of astrocytopathy in neuromyelitis optica spectrum disorder (NMOSD) by measuring levels of the astrocytic enzyme glutamine synthetase (GS) and glial fibrillary acidic protein (GFAP), an established astrocytic biomarker known to be associated with disease activity in multiple sclerosis. METHODS: Cerebrospinal fluid concentrations of GS and GFAP were measured by ELISA in patients with NMOSD (n=39, 28 aquaporin-4 (AQP4)-Ab-seropositive, 3 double-Ab-seronegative, 4 myelin oligodendrocyte glycoprotein (MOG)-Ab-seropositive and 4 AQP4-Ab-seronegative with unknown MOG-Ab-serostatus), multiple sclerosis (MS) (n=69), optic neuritis (n=5) and non-neurological controls (n=37). RESULTS: GFAP and GS concentrations differed significantly across groups (both p<0.001), showing a similar pattern of elevation in patients with AQP4-Ab-seropositive NMOSD. GS and GFAP were significantly correlated, particularly in patients with AQP4-Ab-seropositive NMOSD (rs=0.70, p<0.001). Interestingly, GFAP levels in some patients with double-Ab-seronegative NMOSD were markedly increased. CONCLUSIONS: Our data indicate astrocytic injury occurs in some patients with double-Ab-seronegative NMOSD, which hints at the possible existence of yet undiscovered astrocytic autoimmune targets. We hypothesise that elevated GS and GFAP levels could identify those double-Ab-seronegative patients suitable to undergo in-depth autoimmune screening for astrocytic antibodies

    Adherent Monomer-Misfolded SOD1

    Get PDF
    Background: Multiple cellular functions are compromised in amyotrophic lateral sclerosis (ALS). In familial ALS (FALS) with Cu/Zn superoxide dismutase (SOD1) mutations, the mechanisms by which the mutation in SOD1 leads to such a wide range of abnormalities remains elusive. Methodology/Principal Findings: To investigate underlying cellular conditions caused by the SOD1 mutation, we explored mutant SOD1-interacting proteins in the spinal cord of symptomatic transgenic mice expressing a mutant SOD1, SOD1 Leu126delTT with a FLAG sequence (DF mice). This gene product is structurally unable to form a functional homodimer. Tissues were obtained from both DF mice and disease-free mice expressing wild-type with FLAG SOD1 (WF mice). Both FLAG-tagged SOD1 and cross-linking proteins were enriched and subjected to a shotgun proteomic analysis. We identified 34 proteins (or protein subunits) in DF preparations, while in WF preparations, interactions were detected with only 4 proteins. Conclusions/Significance: These results indicate that disease-causing mutant SOD1 likely leads to inadequate proteinprotein interactions. This could be an early and crucial process in the pathogenesis of FALS

    Short-term effects of amelogenin gene splice products A+4 and A-4 implanted in the exposed rat molar pulp

    Get PDF
    In order to study the short-time effects of two bioactive low-molecular amelogenins A+4 and A-4, half-moon cavities were prepared in the mesial aspect of the first maxillary molars, and after pulp exposure, agarose beads alone (controls) or beads soaked in A+4 or A-4 (experimental) were implanted into the pulp. After 1, 3 or 7 days, the rats were killed and the teeth studied by immunohistochemistry. Cell proliferation was studied by PCNA labeling, positive at 3 days, but decreasing at day 7 for A+4, whilst constantly high between 3 and 7 days for A-4. The differentiation toward the osteo/odontoblast lineage shown by RP59 labeling was more apparent for A-4 compared with A+4. Osteopontin-positive cells were alike at days 3 and 7 for A-4. In contrast, for A+4, the weak labeling detected at day 3 became stronger at day 7. Dentin sialoprotein (DSP), an in vivo odontoblast marker, was not detectable until day 7 where a few cells became DSP positive after A-4 stimulation, but not for A+4. These results suggest that A +/- 4 promote the proliferation of some pulp cells. Some of them further differentiate into osteoblast-like progenitors, the effects being more precocious for A-4 (day 3) compared with A+4 (day 7). The present data suggest that A +/- 4 promote early recruitment of osteogenic progenitors, and evidence functional differences between A+4 and A-4

    Immunohistochemical analysis of changes in signaling pathway activation downstream of growth factor receptors in pancreatic duct cell carcinogenesis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The pathogenesis of pancreatic ductal adenocarcinoma (PDAC) involves multi-stage development of molecular aberrations affecting signaling pathways that regulate cancer growth and progression. This study was performed to gain a better understanding of the abnormal signaling that occurs in PDAC compared with normal duct epithelia.</p> <p>Methods</p> <p>We performed immunohistochemistry on a tissue microarray of 26 PDAC, 13 normal appearing adjacent pancreatic ductal epithelia, and 12 normal non-PDAC ducts. We compared the levels of 18 signaling proteins including growth factor receptors, tumor suppressors and 13 of their putative downstream phosphorylated (p-) signal transducers in PDAC to those in normal ductal epithelia.</p> <p>Results</p> <p>The overall profiles of signaling protein expression levels, activation states and sub-cellular distribution in PDAC cells were distinguishable from non-neoplastic ductal epithelia. The ERK pathway activation was correlated with high levels of <sup>S2448</sup>p-mTOR (100%, p = 0.05), <sup>T389</sup>p-S6K (100%, p = 0.02 and <sup>S235/236</sup>p-S6 (86%, p = 0.005). Additionally, <sup>T389</sup>p-S6K correlated with <sup>S727</sup>p-STAT3 (86%, p = 0.005). Advanced tumors with lymph node metastasis were characterized by high levels of <sup>S276</sup>p-NFΞΊB (100%, p = 0.05) and <sup>S9</sup>p-GSK3Ξ² (100%, p = 0.05). High levels of PKBΞ²/AKT2, EGFR, as well as nuclear <sup>T202/Y204</sup>p-ERK and <sup>T180/Y182</sup>p-p38 were observed in normal ducts adjacent to PDAC compared with non-cancerous pancreas.</p> <p>Conclusion</p> <p>Multiple signaling proteins are activated in pancreatic duct cell carcinogenesis including those associated with the ERK, PKB/AKT, mTOR and STAT3 pathways. The ERK pathway activation appears also increased in duct epithelia adjacent to carcinoma, suggesting tumor micro-environmental effects.</p

    Caffeine as a tool for investigating the integration of Cdc25 phosphorylation, activity and ubiquitin-dependent degradation in Schizosaccharomyces pombe

    Get PDF
    The evolutionarily conserved Cdc25 phosphatase is an essential protein that removes inhibitory phosphorylation moieties on the mitotic regulator Cdc2. Together with the Wee1 kinase, a negative regulator of Cdc2 activity, Cdc25 is thus a central regulator of cell cycle progression in Schizosaccharomyces pombe. The expression and activity of Cdc25 is dependent on the activity of the Target of Rapamycin Complex 1 (TORC1). TORC1 inhibition leads to the activation of Cdc25 and repression of Wee1, leading to advanced entry into mitosis. Withdrawal of nitrogen leads to rapid Cdc25 degradation via the ubiquitin- dependent degradation pathway by the Pub1 E3- ligase. Caffeine is believed to mediate the override of DNA damage checkpoint signalling, by inhibiting the activity of the ataxia telangiectasia mutated (ATM)/Rad3 homologues. This model remains controversial, as TORC1 appears to be the preferred target of caffeine in vivo. Recent studies suggest that caffeine induces DNA damage checkpoint override by inducing the nuclear accumulation of Cdc25 in S. pombe. Caffeine may thus modulate Cdc25 activity and stability via inhibition of TORC1. A clearer understanding of the mechanisms by which caffeine stabilises Cdc25, may provide novel insights into how TORC1 and DNA damage signalling is integrated

    Elevated Uptake of Plasma Macromolecules by Regions of Arterial Wall Predisposed to Plaque Instability in a Mouse Model

    Get PDF
    Atherosclerosis may be triggered by an elevated net transport of lipid-carrying macromolecules from plasma into the arterial wall. We hypothesised that whether lesions are of the thin-cap fibroatheroma (TCFA) type or are less fatty and more fibrous depends on the degree of elevation of transport, with greater uptake leading to the former. We further hypothesised that the degree of elevation can depend on haemodynamic wall shear stress characteristics and nitric oxide synthesis. Placing a tapered cuff around the carotid artery of apolipoprotein E -/- mice modifies patterns of shear stress and eNOS expression, and triggers lesion development at the upstream and downstream cuff margins; upstream but not downstream lesions resemble the TCFA. We measured wall uptake of a macromolecular tracer in the carotid artery of C57bl/6 mice after cuff placement. Uptake was elevated in the regions that develop lesions in hyperlipidaemic mice and was significantly more elevated where plaques of the TCFA type develop. Computational simulations and effects of reversing the cuff orientation indicated a role for solid as well as fluid mechanical stresses. Inhibiting NO synthesis abolished the difference in uptake between the upstream and downstream sites. The data support the hypothesis that excessively elevated wall uptake of plasma macromolecules initiates the development of the TCFA, suggest that such uptake can result from solid and fluid mechanical stresses, and are consistent with a role for NO synthesis. Modification of wall transport properties might form the basis of novel methods for reducing plaque rupture

    Inverse Correlation between Serum Levels of Selenoprotein P and Adiponectin in Patients with Type 2 Diabetes

    Get PDF
    Background: We recently identified selenoprotein P (SeP) as a liver-derived secretory protein that causes insulin resistance in the liver and skeletal muscle; however, it is unknown whether and, if so, how SeP acts on adipose tissue. The present study tested the hypothesis that SeP is related to hypoadiponectinemia in patients with type 2 diabetes. Methodology/Principal Findings: We compared serum levels of SeP with those of adiponectin and other clinical parameters in 36 patients with type 2 diabetes. We also measured levels of blood adiponectin in SeP knockout mice. Circulating SeP levels were positively correlated with fasting plasma glucose (r = 0.35, P = 0.037) and negatively associated with both total and high-molecular adiponectin in patients with type 2 diabetes (r = 20.355, P = 0.034; r = 20.367, P = 0.028). SeP was a predictor of both total and high-molecular adiponectin, independently of age, body weight, and quantitative insulin sensitivity index (b = 20.343, P = 0.022; b = 20.357, P = 0.017). SeP knockout mice exhibited an increase in blood adiponectin levels when fed regular chow or a high sucrose, high fat diet. Conclusions/Significance: These results suggest that overproduction of liver-derived secretory protein SeP is connected with hypoadiponectinemia in patients with type 2 diabetes

    Hyperlipidemia and Atherosclerotic Lesion Development in Ldlr-Deficient Mice on a Long-Term High-Fat Diet

    Get PDF
    BACKGROUND: Mice deficient in the LDL receptor (Ldlr(-/-) mice) have been widely used as a model to mimic human atherosclerosis. However, the time-course of atherosclerotic lesion development and distribution of lesions at specific time-points are yet to be established. The current study sought to determine the progression and distribution of lesions in Ldlr(-/-) mice. METHODOLOGY/PRINCIPAL FINDINGS: Ldlr-deficient mice fed regular chow or a high-fat (HF) diet for 0.5 to 12 months were analyzed for atherosclerotic lesions with en face and cross-sectional imaging. Mice displayed significant individual differences in lesion development when fed a chow diet, whereas those on a HF diet developed lesions in a time-dependent and site-selective manner. Specifically, mice subjected to the HF diet showed slight atherosclerotic lesions distributed exclusively in the aortic roots or innominate artery before 3 months. Lesions extended to the thoracic aorta at 6 months and abdominal aorta at 9 months. Cross-sectional analysis revealed the presence of advanced lesions in the aortic sinus after 3 months in the group on the HF diet and in the innominate artery at 6 to 9 months. The HF diet additionally resulted in increased total cholesterol, LDL, glucose, and HBA1c levels, along with the complication of obesity. CONCLUSIONS/SIGNIFICANCE: Ldlr-deficient mice on the HF diet tend to develop site-selective and size-specific atherosclerotic lesions over time. The current study should provide information on diet induction or drug intervention times and facilitate estimation of the appropriate locations of atherosclerotic lesions in Ldlr(-/-) mice

    Histone Deacetylases Control Neurogenesis in Embryonic Brain by Inhibition of BMP2/4 Signaling

    Get PDF
    Background Histone-modifying enzymes are essential for a wide variety of cellular processes dependent upon changes in gene expression. Histone deacetylases (HDACs) lead to the compaction of chromatin and subsequent silencing of gene transcription, and they have recently been implicated in a diversity of functions and dysfunctions in the postnatal and adult brain including ocular dominance plasticity, memory consolidation, drug addiction, and depression. Here we investigate the role of HDACs in the generation of neurons and astrocytes in the embryonic brain. Principal Findings As a variety of HDACs are expressed in differentiating neural progenitor cells, we have taken a pharmacological approach to inhibit multiple family members. Inhibition of class I and II HDACs in developing mouse embryos with trichostatin A resulted in a dramatic reduction in neurogenesis in the ganglionic eminences and a modest increase in neurogenesis in the cortex. An identical effect was observed upon pharmacological inhibition of HDACs in in vitro-differentiating neural precursors derived from the same brain regions. A reduction in neurogenesis in ganglionic eminence-derived neural precursors was accompanied by an increase in the production of immature astrocytes. We show that HDACs control neurogenesis by inhibition of the bone morphogenetic protein BMP2/4 signaling pathway in radial glial cells. HDACs function at the transcriptional level by inhibiting and promoting, respectively, the expression of Bmp2 and Smad7, an intracellular inhibitor of BMP signaling. Inhibition of the BMP2/4 signaling pathway restored normal levels of neurogenesis and astrogliogenesis to both ganglionic eminence- and cortex-derived cultures in which HDACs were inhibited. Conclusions Our results demonstrate a transcriptionally-based regulation of BMP2/4 signaling by HDACs both in vivo and in vitro that is critical for neurogenesis in the ganglionic eminences and that modulates cortical neurogenesis. The results also suggest that HDACs may regulate the developmental switch from neurogenesis to astrogliogenesis that occurs in late gestation
    • …
    corecore