25 research outputs found

    Separate loci underlie resistance to root infection and leaf scorch during soybean sudden death syndrome

    Get PDF
    Soybean [Glycine max (L.) Merr.] cultivars show differences in their resistance to both the leaf scorch and root rot of sudden death syndrome (SDS). The syndrome is caused by root colonization by Fusarium virguliforme (ex. F. solani f. sp. glycines). Root susceptibility combined with reduced leaf scorch resistance has been associated with resistance to Heterodera glycines HG Type 1.3.6.7 (race 14) of the soybean cyst nematode (SCN). In contrast, the rhg1 locus underlying resistance to Hg Type 0 was found clustered with three loci for resistance to SDS leaf scorch and one for root infection. The aims of this study were to compare the inheritance of resistance to leaf scorch and root infection in a population that segregated for resistance to SCN and to identify the underlying quantitative trait loci (QTL). “Hartwig”, a cultivar partially resistant to SDS leaf scorch, F. virguliforme root infection and SCN HG Type 1.3.6.7 was crossed with the partially susceptible cultivar “Flyer”. Ninety-two F5-derived recombinant inbred lines and 144 markers were used for map development. Four QTL found in earlier studies were confirmed. One contributed resistance to leaf scorch on linkage group (LG) C2 (Satt277; P = 0.004, R 2 = 15%). Two on LG G underlay root infection at R8 (Satt038; P = 0.0001 R 2 = 28.1%; Satt115; P = 0.003, R 2 = 12.9%). The marker Satt038 was linked to rhg1 underlying resistance to SCN Hg Type 0. The fourth QTL was on LG D2 underlying resistance to root infection at R6 (Satt574; P = 0.001, R 2 = 10%). That QTL was in an interval previously associated with resistance to both SDS leaf scorch and SCN Hg Type 1.3.6.7. The QTL showed repulsion linkage with resistance to SCN that may explain the relative susceptibility to SDS of some SCN resistant cultivars. One additional QTL was discovered on LG G underlying resistance to SDS leaf scorch measured by disease index (Satt130; P = 0.003, R 2 = 13%). The loci and markers will provide tagged alleles with which to improve the breeding of cultivars combining resistances to SDS leaf scorch, root infection and SCN HG Type 1.3.6.7

    Inheritance and relationships of flowering time and seed size in kabuli chickpea

    Get PDF
    Flowering time and seed size are the important traits for adaptation in chickpea. Early phenology (time of flowering, podding and maturity) enhance chickpea adaptation to short season environments. Along with a trait of consumer preference, seed size has also been considered as an important factor for subsequent plant growth parameters including germination, seedling vigour and seedling mass. Small seeded kabuli genotype ICC 16644 was crossed with four genotypes (JGK 2, KAK 2, KRIPA and ICC 17109) to study inheritance of flowering time and seed size. The relationships of phenology with seed size, grain yield and its component traits were studied. The study included parents, F1, F2 and F3 of four crosses. The segregation data of F2 indicated flowering time in chickpea was governed by two genes with duplicate recessive epistasis and lateness was dominant to earliness. Two genes were controlling 100-seed weight where small seed size was dominant over large seed size. Early phenology had significant negative or no association (ICC 16644 × ICC 17109) with 100-seed weight. Yield per plant had significant positive association with number of seeds per plant, number of pods per plant, biological yield per plant, 100-seed weight, harvest index and plant height and hence could be considered as factors for seed yield improvement. Phenology had no correlation with yield per se (seed yield per plant) in any of the crosses studied. Thus, present study shows that in certain genetic background it might be possible to breed early flowering genotypes with large seed size in chickpea and selection of early flowering genotypes may not essentially have a yield penalty
    corecore