137 research outputs found

    Native IYG: Improving Psychosocial Protective Factors for HIV/STI and Teen Pregnancy Prevention among Youth in American Indian/Alaska Native Communities

    Get PDF
    Background: Few HIV/STI and pregnancy prevention programs for youth in American Indian and Alaska Native (AI/AN) communities have been rigorously evaluated despite sexual health disparities in this population. This study reports the evaluation of a culturally adapted Internet-based HIV/STI and pregnancy prevention program for AI/AN youth, Native It’s Your Game (Native IYG). Methods: A randomized study was conducted with 523 youth (12 to 14 years old), recruited from 25 tribal sites in Alaska, Arizona, and the Pacific Northwest. Participants were surveyed at baseline and upon completion of treatment or comparison interventions. Multivariable linear regression models were used to assess impact on short term psychosocial determinants of sexual initiation. Results: A sample of 402 intervention (n=290) and comparison (n=112) youth completed the post-intervention survey (76.9% retention) from 1 to 462 days post-baseline (mean = 114, SD = ±96.67). Participants were 55.5% female, mean age of 13.0 (± 0.97) years with 86.1% self-reporting as AI/AN. Reasons not to have sex, STI knowledge, condom knowledge, condom availability self-efficacy, and condom use self-efficacy were significantly impacted (all P ≤ .01). Limitations included variability in intervention exposure and time between data collection time points. Conclusions: Native IYG demonstrated efficacy to impact short-term psychosocial determinants of sexual behavior in a sample of predominantly AI/AN middle school youth

    A distal region of the human TGM1 promoter is required for expression in transgenic mice and cultured keratinocytes

    Get PDF
    BACKGROUND: TGM1(transglutaminase 1) is an enzyme that crosslinks the cornified envelope of mature keratinocytes. Appropriate expression of the TGM1 gene is crucial for proper keratinocyte function as inactivating mutations lead to the debilitating skin disease, lamellar ichthyosis. TGM1 is also expressed in squamous metaplasia, a consequence in some epithelia of vitamin A deficiency or toxic insult that can lead to neoplasia. An understanding of the regulation of this gene in normal and abnormal differentiation states may contribute to better disease diagnosis and treatment. METHODS: In vivo requirements for expression of the TGM1 gene were studied by fusing various lengths of promoter DNA to a reporter and injecting the DNA into mouse embryos to generate transgenic animals. Expression of the reporter was ascertained by Western blotting and immunohistochemistry. Further delineation of a transcriptionally important distal region was determined by transfections of progressively shortened or mutated promoter DNA into cultured keratinocytes. RESULTS: In vivo analysis of a reporter transgene driven by the TGM1 promoter revealed that 1.6 kilobases, but not 1.1 kilobases, of DNA was sufficient to confer tissue-specific and cell layer-specific expression. This same region was responsible for reporter expression in tissues undergoing squamous metaplasia as a response to vitamin A deprivation. Mutation of a distal promoter AP1 site or proximal promoter CRE site, both identified as important transcriptional elements in transfection assays, did not prevent appropriate expression. Further searching for transcriptional elements using electrophoretic mobility shift (EMSA) and transfection assays in cultured keratinocytes identified two Sp1 elements in a transcriptionally active region between -1.6 and -1.4 kilobases. While mutation of either Sp1 site or the AP1 site singly had only a small effect, mutation of all three sites eliminated nearly all the transcriptional activity. CONCLUSIONS: A distal region of the TGM1 gene promoter, containing AP1 and Sp1 binding sites, is evolutionarily conserved and responsible for high level expression in transgenic mice and in transfected keratinocyte cultures

    Bacterial artificial chromosomes as analytical basis for gene transcriptional machineries

    Get PDF
    Bacterial Artificial Chromosomes (BACs) had been minimal components of various genome-sequencing projects, constituting perfect analytical basis for functional genomics. Here we describe an enhancer screening strategy in which BAC clones that cover any genomic segments of interest are modified to harbor a reporter cassette by transposon tagging, then processed to carry selected combinations of gene regulatory modules by homologous recombination mediated systematic deletions. Such engineered BAC-reporter constructs in bacterial cells are ready for efficient transgenesis in mice to evaluate activities of gene regulatory modules intact or absent in the constructs. By utilizing the strategy, we could speedily identify a critical genomic fragment for spatio-temporally regulated expression of a mouse cadherin gene whose structure is extraordinarily huge and intricate. This BAC-based methodology would hence provide a novel screening platform for gene transcriptional machineries that dynamically fluctuate during development, pathogenesis and/or evolution

    Comparison of transcriptional responses in liver tissue and primary hepatocyte cell cultures after exposure to hexahydro-1, 3, 5-trinitro-1, 3, 5-triazine

    Get PDF
    BACKGROUND: Cell culture systems are useful in studying toxicological effects of chemicals such as Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), however little is known as to how accurately isolated cells reflect responses of intact organs. In this work, we compare transcriptional responses in livers of Sprague-Dawley rats and primary hepatocyte cells after exposure to RDX to determine how faithfully the in vitro model system reflects in vivo responses. RESULTS: Expression patterns were found to be markedly different between liver tissue and primary cell cultures before exposure to RDX. Liver gene expression was enriched in processes important in toxicology such as metabolism of amino acids, lipids, aromatic compounds, and drugs when compared to cells. Transcriptional responses in cells exposed to 7.5, 15, or 30 mg/L RDX for 24 and 48 hours were different from those of livers isolated from rats 24 hours after exposure to 12, 24, or 48 mg/Kg RDX. Most of the differentially expressed genes identified across conditions and treatments could be attributed to differences between cells and tissue. Some similarity was observed in RDX effects on gene expression between tissue and cells, but also significant differences that appear to reflect the state of the cell or tissue examined. CONCLUSION: Liver tissue and primary cells express different suites of genes that suggest they have fundamental differences in their cell physiology. Expression effects related to RDX exposure in cells reflected a fraction of liver responses indicating that care must be taken in extrapolating from primary cells to whole animal organ toxicity effects

    Myoepithelial cells: good fences make good neighbors

    Get PDF
    The mammary gland consists of an extensively branched ductal network contained within a distinctive basement membrane and encompassed by a stromal compartment. During lactation, production of milk depends on the action of the two epithelial cell types that make up the ductal network: luminal cells, which secrete the milk components into the ductal lumen; and myoepithelial cells, which contract to aid in the ejection of milk. There is increasing evidence that the myoepithelial cells also play a key role in the organizational development of the mammary gland, and that the loss and/or change of myoepithelial cell function is a key step in the development of breast cancer. In this review we briefly address the characteristics of breast myoepithelial cells from human breast and mouse mammary gland, how they function in normal mammary gland development, and their recently appreciated role in tumor suppression

    Molecular analysis of metastasis in a polyomavirus middle T mouse model: the role of osteopontin

    Get PDF
    INTRODUCTION: In order to study metastatic disease, we employed the use of two related polyomavirus middle T transgenic mouse tumor transplant models of mammary carcinoma (termed Met and Db) that display significant differences in metastatic potential. METHODS: Through suppression subtractive hybridization coupled to the microarray, we found osteopontin (OPN) to be a highly expressed gene in the tumors of the metastatic mouse model, and a lowly expressed gene in the tumors of the lowly metastatic mouse model. We further analyzed the role of OPN in this model by examining sense and antisense constructs using in vitro and in vivo methods. RESULTS: With in vivo metastasis assays, the antisense Met cells showed no metastatic tumor formation to the lungs of recipient mice, while wild-type Met cells, with higher levels of OPN, showed significant amounts of metastasis. The Db cells showed a significantly reduced metastasis rate in the in vivo metastasis assay as compared with the Met cells. Db cells with enforced overexpression of OPN showed elevated levels of OPN but did not demonstrate an increase in the rate of metastasis compared with the wild-type Db cells. CONCLUSIONS: We conclude that OPN is an essential regulator of the metastatic phenotype seen in polyomavirus middle T-induced mammary tumors. Yet OPN expression alone is not sufficient to cause metastasis. These data suggest a link between metastasis and phosphatidylinositol-3-kinase-mediated transcriptional upregulation of OPN, but additional phosphatidylinositol-3-kinase-regulated genes may be essential in precipitating the metastasis phenotype in the polyomavirus middle T model

    Comparative analysis of inflamed and non-inflamed colon biopsies reveals strong proteomic inflammation profile in patients with ulcerative colitis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Accurate diagnostic and monitoring tools for ulcerative colitis (UC) are missing. Our aim was to describe the proteomic profile of UC and search for markers associated with disease exacerbation. Therefore, we aimed to characterize specific proteins associated with inflamed colon mucosa from patients with acute UC using mass spectrometry-based proteomic analysis.</p> <p>Methods</p> <p>Biopsies were sampled from rectum, sigmoid colon and left colonic flexure from twenty patients with active proctosigmoiditis and from four healthy controls for proteomics and histology. Proteomic profiles of whole colonic biopsies were characterized using 2D-gel electrophoresis, and peptide mass fingerprinting using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) was applied for identification of differently expressed protein spots.</p> <p>Results</p> <p>A total of 597 spots were annotated by image analysis and 222 of these had a statistically different protein level between inflamed and non-inflamed tissue in the patient group. Principal component analysis clearly grouped non-inflamed samples separately from the inflamed samples indicating that the proteomic signature of colon mucosa with acute UC is strong. Totally, 43 individual protein spots were identified, including proteins involved in energy metabolism (triosephosphate isomerase, glycerol-3-phosphate-dehydrogenase, alpha enolase and L-lactate dehydrogenase B-chain) and in oxidative stress (superoxide dismutase, thioredoxins and selenium binding protein).</p> <p>Conclusions</p> <p>A distinct proteomic profile of inflamed tissue in UC patients was found. Specific proteins involved in energy metabolism and oxidative stress were identified as potential candidate markers for UC.</p
    corecore