49 research outputs found

    Are Child and Adolescent Responses to Placebo Higher in Major Depression than in Anxiety Disorders? A Systematic Review of Placebo-Controlled Trials

    Get PDF
    BACKGROUND: In a previous report, we hypothesized that responses to placebo were high in child and adolescent depression because of specific psychopathological factors associated with youth major depression. The purpose of this study was to compare the placebo response rates in pharmacological trials for major depressive disorder (MDD), obsessive compulsive disorder (OCD) and other anxiety disorders (AD-non-OCD). METHODOLOGY AND PRINCIPAL FINDINGS: We reviewed the literature relevant to the use of psychotropic medication in children and adolescents with internalized disorders, restricting our review to double-blind studies including a placebo arm. Placebo response rates were pooled and compared according to diagnosis (MDD vs. OCD vs. AD-non-OCD), age (adolescent vs. child), and date of publication. From 1972 to 2007, we found 23 trials that evaluated the efficacy of psychotropic medication (mainly non-tricyclic antidepressants) involving youth with MDD, 7 pertaining to youth with OCD, and 10 pertaining to youth with other anxiety disorders (N = 2533 patients in placebo arms). As hypothesized, the placebo response rate was significantly higher in studies on MDD, than in those examining OCD and AD-non-OCD (49.6% [range: 17-90%] vs. 31% [range: 4-41%] vs. 39.6% [range: 9-53], respectively, ANOVA F = 7.1, p = 0.002). Children showed a higher stable placebo response within all three diagnoses than adolescents, though this difference was not significant. Finally, no significant effects were found with respect to the year of publication. CONCLUSION: MDD in children and adolescents appears to be more responsive to placebo than other internalized conditions, which highlights differential psychopathology

    Stressed out symbiotes:hypotheses for the influence of abiotic stress on arbuscular mycorrhizal fungi

    Get PDF
    Abiotic stress is a widespread threat to both plant and soil communities. Arbuscular mycorrhizal (AM) fungi can alleviate effects of abiotic stress by improving host plant stress tolerance, but the direct effects of abiotic stress on AM fungi are less well understood. We propose two hypotheses predicting how AM fungi will respond to abiotic stress. The stress exclusion hypothesis predicts that AM fungal abundance and diversity will decrease with persistent abiotic stress. The mycorrhizal stress adaptation hypothesis predicts that AM fungi will evolve in response to abiotic stress to maintain their fitness. We conclude that abiotic stress can have effects on AM fungi independent of the effects on the host plant. AM fungal communities will change in composition in response to abiotic stress, which may mean the loss of important individual species. This could alter feedbacks to the plant community and beyond. AM fungi will adapt to abiotic stress independent of their host plant. The adaptation of AM fungi to abiotic stress should allow the maintenance of the plant-AM fungal mutualism in the face of changing climates. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00442-016-3673-7) contains supplementary material, which is available to authorized users

    Mycorrhizal fungi suppress aggressive Agricultural weeds.

    Get PDF
    Plant growth responses to arbuscular mycorrhizal fungi (AMF) are highly variable, ranging from mutualism in a wide range of plants, to antagonism in some non-mycorrhizal plant species and plants characteristic of disturbed environments. Many agricultural weeds are non mycorrhizal or originate from ruderal environments where AMF are rare or absent. This led us to hypothesize that AMF may suppress weed growth, a mycorrhizal attribute which has hardly been considered. We investigated the impact of AMF and AMF diversity (three versus one AMF taxon) on weed growth in experimental microcosms where a crop (sunflower) was grown together with six widespread weed species. The presence of AMF reduced total weed biomass with 47% in microcosms where weeds were grown together with sunflower and with 25% in microcosms where weeds were grown alone. The biomass of two out of six weed species was significantly reduced by AMF (-66% & -59%) while the biomass of the four remaining weed species was only slightly reduced (-20% to -37%). Sunflower productivity was not influenced by AMF or AMF diversity. However, sunflower benefitted from AMF via enhanced phosphorus nutrition. The results indicate that the stimulation of arbuscular mycorrhizal fungi in agro-ecosystems may suppress some aggressive weeds

    Species-level versus community-level patterns of mycorrhizal dependence on phosphorus: an example of Simpson’s paradox

    Full text link
    1.  Ecological studies commonly assume that it is possible to extrapolate from a response shown by a fixed set of species to the response when the species composition is allowed to change. However, as described by Simpson’s paradox, this is not necessarily a reasonable expectation. 2.  The impact of Simpson’s paradox on an ecological question was tested using a meta-analysis of data on plant responses to arbuscular mycorrhizas. Although species-level response commonly declines as phosphorus availability increases, we hypothesized that the community-level response could either decline or remain constant. 3.  As expected, mycorrhizal response of individual species declined significantly as P supply increased. The response averaged across multiple species was negative but not robust, so we cannot distinguish clearly between the hypotheses. 4.  It is impossible to assume that community-level responses to environmental gradients are the same as those found at species level. We recommend that experimental tests of hypotheses should allow species identity to change with the environment.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/74069/1/j.1365-2435.2002.00627.x.pd
    corecore