16 research outputs found

    Involvement of hTERT in apoptosis induced by interference with Bcl-2 expression and function

    Get PDF
    Here, we investigated the role of telomerase on Bcl-2-dependent apoptosis. To this end, the 4625 Bcl-2/Bcl-x(L) bispecific antisense oligonucleotide and the HA14-1 Bcl-2 inhibitor were used. We found that apoptosis induced by 4625 oligonucleotide was associated with decreased Bcl-2 protein expression and telomerase activity, while HA14-1 triggered apoptosis without affecting both Bcl-2 and telomerase levels. Interestingly, HA14-1 treatment resulted in a profound change from predominantly nuclear to a predominantly cytoplasmic localization of hTERT. Downregulation of endogenous hTERT protein by RNA interference markedly increased apoptosis induced by both 4625 and HA14-1, while overexpression of wild-type hTERT blocked Bcl-2-dependent apoptosis in a p53-independent manner. Catalytically and biologically inactive hTERT mutants showed a similar behavior as the wild-type form, indicating that hTERT inhibited the 4625 and HA14-1-induced apoptosis regardless of telomerase activity and its ability to lengthening telomeres. Finally, hTERT overexpression abrogated 4625 and HA14-1-induced mitochondrial dysfunction and nuclear translocation of hTERT. In conclusion, our results demonstrate that hTERT is involved in mitochondrial apoptosis induced by targeted inhibition of Bcl-2

    Wild-derived mouse stocks: an underappreciated tool for aging research

    No full text
    Virtually all biomedical research makes use of a relatively small pool of laboratory-adapted, inbred, isogenic stocks of mice. Although the advantages of these models are many, there are a number of disadvantages as well. When studying a multifaceted process such as aging, the problems associated with using laboratory stocks are greatly inflated. On the other hand, wild-derived mouse stocks, loosely defined here as either wild-caught individuals or the recent progeny of wild-caught individuals, have much to offer to biogerontology research. Hence, the aims of this review are threefold: (1) to (re)acquaint readers with the pros and cons of using a typical inbred laboratory mouse model for aging research; (2) to reintroduce the notion of using wild-derived mouse stocks in aging research as championed by Austad, Miller and others for more than a decade, and (3) to provide an overview of recent advances in biogerontology using wild-derived mouse stocks
    corecore