13 research outputs found

    Single Nucleotide Polymorphism in Gene Encoding Transcription Factor Prep1 Is Associated with HIV-1-Associated Dementia

    Get PDF
    BACKGROUND: Infection with HIV-1 may result in severe cognitive and motor impairment, referred to as HIV-1-associated dementia (HAD). While its prevalence has dropped significantly in the era of combination antiretroviral therapy, milder neurocognitive disorders persist with a high prevalence. To identify additional therapeutic targets for treating HIV-associated neurocognitive disorders, several candidate gene polymorphisms have been evaluated, but few have been replicated across multiple studies. METHODS: We here tested 7 candidate gene polymorphisms for association with HAD in a case-control study consisting of 86 HAD cases and 246 non-HAD AIDS patients as controls. Since infected monocytes and macrophages are thought to play an important role in the infection of the brain, 5 recently identified single nucleotide polymorphisms (SNPs) affecting HIV-1 replication in macrophages in vitro were also tested. RESULTS: The CCR5 wt/Δ32 genotype was only associated with HAD in individuals who developed AIDS prior to 1991, in agreement with the observed fading effect of this genotype on viral load set point. A significant difference in genotype distribution among all cases and controls irrespective of year of AIDS diagnosis was found only for a SNP in candidate gene PREP1 (p = 1.2 × 10(-5)). Prep1 has recently been identified as a transcription factor preferentially binding the -2,518 G allele in the promoter of the gene encoding MCP-1, a protein with a well established role in the etiology of HAD. CONCLUSION: These results support previous findings suggesting an important role for MCP-1 in the onset of HIV-1-associated neurocognitive disorders

    Adoption of an “Open” Envelope Conformation Facilitating CD4 Binding and Structural Remodeling Precedes Coreceptor Switch in R5 SHIV-Infected Macaques

    Get PDF
    A change in coreceptor preference from CCR5 to CXCR4 towards the end stage disease in some HIV-1 infected individuals has been well documented, but the reasons and mechanisms for this tropism switch remain elusive. It has been suggested that envelope structural constraints in accommodating amino acid changes required for CXCR4 usage is an obstacle to tropism switch, limiting the rate and pathways available for HIV-1 coreceptor switching. The present study was initiated in two R5 SHIVSF162P3N-infected rapid progressor macaques with coreceptor switch to test the hypothesis that an early step in the evolution of tropism switch is the adoption of a less constrained and more “open” envelope conformation for better CD4 usage, allowing greater structural flexibility to accommodate further mutational changes that confer CXCR4 utilization. We show that, prior to the time of coreceptor switch, R5 viruses in both macaques evolved to become increasingly sCD4-sensitive, suggestive of enhanced exposure of the CD4 binding site and an “open” envelope conformation, and this correlated with better gp120 binding to CD4 and with more efficient infection of CD4low cells such as primary macrophages. Moreover, significant changes in neutralization sensitivity to agents and antibodies directed against functional domains of gp120 and gp41 were seen for R5 viruses close to the time of X4 emergence, consistent with global changes in envelope configuration and structural plasticity. These observations in a simian model of R5-to-X4 evolution provide a mechanistic basis for the HIV-1 coreceptor switch

    The HIV-1 transmission bottleneck

    Full text link

    The HIV-1 transmission bottleneck

    Get PDF
    It is well established that most new systemic infections of HIV-1 can be traced back to one or a limited number of founder viruses. Usually, these founders are more closely related to minor HIV-1 populations in the blood of the presumed donor than to more abundant lineages. This has led to the widely accepted idea that transmission selects for viral characteristics that facilitate crossing the mucosal barrier of the recipient’s genital tract, although the specific selective forces or advantages are not completely defined. However, there are other steps along the way to becoming a founder virus at which selection may occur. These steps include the transition from the donor’s general circulation to the genital tract compartment, survival within the transmission fluid, and establishment of a nascent stable local infection in the recipient’s genital tract. Finally, there is the possibility that important narrowing events may also occur during establishment of systemic infection. This is suggested by the surprising observation that the number of founder viruses detected after transmission in intravenous drug users is also limited. Although some of these steps may be heavily selective, others may result mostly in a stochastic narrowing of the available founder pool. Collectively, they shape the initial infection in each recipient

    The 'thousand-dollar genome': an ethical exploration

    Get PDF
    Sequencing an individual's complete genome is expected to be possible for a relatively low sum ‘one thousand dollars' within a few years. Sequencing refers to determining the order of base pairs that make up the genome. The result is a library of three billion letter combinations. Cheap whole-genome sequencing is of greatest importance to medical scientific research. Comparing individual complete genomes will lead to a better understanding of the contribution genetic variation makes to health and disease. As knowledge increases, the ‘thousand-dollar genome' will also become increasingly important to healthcare. The applications that come within reach raise a number of ethical questions. This monitoring report addresses the issue
    corecore