16 research outputs found

    Pharmacokinetic role of protein binding of mycophenolic acid and its glucuronide metabolite in renal transplant recipients

    Get PDF
    Mycophenolic acid (MPA), the active compound of mycophenolate mofetil (MMF), is used to prevent graft rejection in renal transplant recipients. MPA is glucuronidated to the metabolite MPAG, which exhibits enterohepatic recirculation (EHC). MPA binds for 97% and MPAG binds for 82% to plasma proteins. Low plasma albumin concentrations, impaired renal function and coadministration of cyclosporine have been reported to be associated with increased clearance of MPA. The aim of the study was to develop a population pharmacokinetic model describing the relationship between MMF dose and total MPA (tMPA), unbound MPA (fMPA), total MPAG (tMPAG) and unbound MPAG (fMPAG). In this model the correlation between pharmacokinetic parameters and renal function, plasma albumin concentrations and cotreatment with cyclosporine was quantified. tMPA, fMPA, tMPAG and fMPAG concentration–time profiles of renal transplant recipients cotreated with cyclosporine (n = 48) and tacrolimus (n = 45) were analyzed using NONMEM. A 2- and 1-compartment model were used to describe the pharmacokinetics of fMPA and fMPAG. The central compartments of fMPA and fMPAG were connected with an albumin compartment allowing competitive binding (bMPA and bMPAG). tMPA and tMPAG were modeled as the sum of the bound and unbound concentrations. EHC was modeled by transport of fMPAG to a separate gallbladder compartment. This transport was decreased in case of cyclosporine cotreatment (P < 0.001). In the model, clearance of fMPAG decreased when creatinine clearance (CrCL) was reduced (P < 0.001), and albumin concentration was correlated with the maximum number of binding sites available for MPA and MPAG (P < 0.001). In patients with impaired renal function cotreated with cyclosporine the model adequately described that increasing fMPAG concentrations decreased tMPA AUC due to displacement of MPA from its binding sites. The accumulated MPAG could also be reconverted to MPA by the EHC, which caused increased tMPA AUC in patients cotreated with tacrolimus. Changes in CrCL had hardly any effect on fMPA exposure. A decrease in plasma albumin concentration from 0.6 to 0.4 mmol/l resulted in ca. 38% reduction of tMPA AUC, whereas no reduction in fMPA AUC was seen. In conclusion, a pharmacokinetic model has been developed which describes the relationship between dose and both total and free MPA exposure. The model adequately describes the influence of renal function, plasma albumin and cyclosporine co-medication on MPA exposure. Changes in protein binding due to altered renal function or plasma albumin concentrations influence tMPA exposure, whereas fMPA exposure is hardly affected

    Population pharmacokinetics of mycophenolic acid during the first week after renal transplantation

    No full text
    Objective To investigate the population pharmacokinetics of mycophenolic acid (MPA) in adult kidney transplant recipients during the crucial first week after transplantation. Methods Data were collected from 117 patients. MPA plasma concentrations were determined at t=0, 1, 2, 3 and 4 h after mycophenolate mofetil dosing on days 3, 5 and 7. Population analysis was performed using NONMEM. Covariates screened were sex, age, body weight, serum creatinine, creatinine clearance, serum albumin, days of therapy, diabetes mellitus, organ source (live or cadaveric) and co-therapy (tacrolimus or cyclosporine). Final model validity was evaluated using 200 bootstrapped samples from the original data. Bias and precision were determined through comparison of observed and predicted concentrations. Results Individual concentration–time profiles showed evidence of an absorption lag time and enterohepatic recirculation of MPA in some patients on some occasions. The best base model had bi-exponential elimination with a typical population (SE%) apparent clearance (CL/F) of 29 l/h (5%) and apparent volume of the central compartment of 65 l (7%). CL/F decreased significantly with increasing serum albumin (1.42 l/h reduction in total plasma CL/F with each 1 g/l increase in albumin) and was 27% greater in patients receiving cyclosporine than in those receiving tacrolimus. Evaluation of the final model showed close agreement between pairs of bootstrapped and final model parameter estimates (all difference

    Clinical pharmacokinetics and pharmacodynamics of mycophenolate in patients with autoimmune disease

    No full text
    Mycophenolic acid (MPA), the active drug moiety of mycophenolate, is a potent immunosuppressant agent, which is increasingly being used in the treatment of patients with various autoimmune diseases. An understanding of the pharmacokinetics and pharmacodynamics of mycophenolate in this population should assist the clinician with rational dosage decisions. This review aims to provide an overview of the published literature on the clinical pharmacokinetics of mycophenolate in autoimmune disease and a briefer summary of current pharmacodynamic knowledge, and to identify areas of potential future research in this field. A literature search was conducted using PubMed and EMBASE databases as well as bibliographies of relevant articles and 'on-line early' pages of key journals. Twenty-six pharmacokinetic/pharmacodynamic studies of mycophenolate in people with autoimmune disease were identified and appraised. Twenty-two of these studies used non-compartmental analysis techniques and four used population modelling methods to estimate mycophenolate pharmacokinetic parameters. Seven studies linked mycophenolate exposure to treatment outcomes. Only four studies measured free (unbound) as well as total mycophenolate exposure and only two studies characterised MPA disposition following entericcoated mycophenolate sodium (EC-MPS) administration. Across all studies MPA displayed erratic and complex pharmacokinetics with substantial between-subject variability. Based on total drug measurement, the dose-normalised MPA area under the plasma concentration-time curve (AUC) from 0 to 12 h post-dose (AUC(12)) varied at least five-to ten-fold between subjects. Typical values for apparent oral clearance (CL/F) of MPA during nonlinear mixed-effects modelling ranged from 8.3 to 25.3 L/h. Patient renal function, serum albumin levels, sex, ethnicity, food intake, concurrent administration of interacting drugs such as antacids, metal-containing medications and proton pump inhibitors and polymorphisms in genes encoding uridine diphosphate glucuronosyltransferase were identified in some studies as having a significant influence on the pharmacokinetics of mycophenolate. Typical MPA CL/F values in autoimmune disease patients were generally slightly lower than values published previously in population pharmacokinetic studies involving renal allograft recipients, possibly because of usage of ciclosporin, poorer renal function or lower serum albumin levels in the renal transplant cohort. In a single crossover study involving ten subjects only, significantly higher MPA AUC(12) and maximum MPA concentration (C-max) and lower MPA CL/F were reported following EC-MPS administration compared to mycophenolate mofetil administration. MPA exposure correlated well with treatment efficacy in patients with autoimmune disease (response to treatment, active disease and disease markers); however the relationship between MPA exposure and adverse events (infectious episodes, haematological toxicity and gastrointestinal symptoms) was unclear. Further investigation is required in autoimmune diseases such as chronic plaque psoriasis and rheumatoid arthritis and following EC-MPS administration. The extent of within-subject variability in the pharmacokinetics of mycophenolate is largely unknown and potential covariate influences need to be confirmed in studies with large subject numbers. A relationship between MPA and MPA metabolite exposure and toxicity needs to be established
    corecore