4 research outputs found
Photoinduced 3D orientational order in side chain liquid crystalline azopolymers
We apply experimental technique based on the combination of methods dealing
with principal refractive indices and absorption coefficients to study the
photoinduced 3D orientational order in the films of liquid crystalline (LC)
azopolymers. The technique is used to identify 3D orientational configurations
of trans azobenzene chromophores and to characterize the degree of ordering in
terms of order parameters. We study two types of LC azopolymers which form
structures with preferred in-plane and out-of-plane alignment of
azochromophores, correspondingly. Using irradiation with the polarized light of
two different wavelengths we find that the kinetics of photoinduced anisotropy
can be dominated by either photo-reorientation or photoselection mechanisms
depending on the wavelength. We formulate the phenomenological model describing
the kinetics of photoinduced anisotropy in terms of the isomer concentrations
and the order parameter tensor. We present the numerical results for absorption
coefficients that are found to be in good agreement with the experimental data.
The model is also used to interpret the effect of changing the mechanism with
the wavelength of the pumping light.Comment: uses revtex4 28 pages, 10 figure