169 research outputs found
R Symmetries in the Landscape
In the landscape, states with symmetries at the classical level form a
distinct branch, with a potentially interesting phenomenology. Some preliminary
analyses suggested that the population of these states would be significantly
suppressed. We survey orientifolds of IIB theories compactified on Calabi-Yau
spaces based on vanishing polynomials in weighted projective spaces, and find
that the suppression is quite substantial. On the other hand, we find that a
R-parity is a common feature in the landscape. We discuss whether the
cosmological constant and proton decay or cosmology might select the low energy
branch. We include also some remarks on split supersymmetry.Comment: 13 page
The Dirichlet Casimir effect for theory in (3+1) dimensions: A new renormalization approach
We calculate the next to the leading order Casimir effect for a real scalar
field, within theory, confined between two parallel plates in three
spatial dimensions with the Dirichlet boundary condition. In this paper we
introduce a systematic perturbation expansion in which the counterterms
automatically turn out to be consistent with the boundary conditions. This will
inevitably lead to nontrivial position dependence for physical quantities, as a
manifestation of the breaking of the translational invariance. This is in
contrast to the usual usage of the counterterms in problems with nontrivial
boundary conditions, which are either completely derived from the free cases or
at most supplemented with the addition of counterterms only at the boundaries.
Our results for the massive and massless cases are different from those
reported elsewhere. Secondly, and probably less importantly, we use a
supplementary renormalization procedure, which makes the usage of any analytic
continuation techniques unnecessary.Comment: JHEP3 format,20 pages, 2 figures, to appear in JHE
The Intermediate Scale Branch of the Landscape
Three branches of the string theory landscape have plausibly been identified.
One of these branches is expected to exhibit a roughly logarithmic distribution
of supersymmetry breaking scales. The original KKLT models are in this class.
We argue that certain features of the KKLT model are generic to this branch,
and that the resulting phenomenology depends on a small set of discrete
choices. As in the MSSM, the weak scale in these theories is tuned; a possible
explanation is selection for the dark matter density.Comment: 16 pages. More thorough analysis; additonal reference
Is There A String Theory Landscape
We examine recent claims of a large set of flux compactification solutions of
string theory. We conclude that the arguments for AdS solutions are plausible.
The analysis of meta-stable dS solutions inevitably leads to situations where
long distance effective field theory breaks down. We then examine whether these
solutions are likely to lead to a description of the real world. We conclude
that one must invoke a strong version of the anthropic principle. We explain
why it is likely that this leads to a prediction of low energy supersymmetry
breaking, but that many features of anthropically selected flux
compactifications are likely to disagree with experiment.Comment: 39 pages, Latex, ``Terminology surrounding the anthropic principle
revised to conform with accepted usage. More history of the anthropic
principle included. Various references added.
A Gravitational Aharonov-Bohm Effect, and its Connection to Parametric Oscillators and Gravitational Radiation
A thought experiment is proposed to demonstrate the existence of a
gravitational, vector Aharonov-Bohm effect. A connection is made between the
gravitational, vector Aharonov-Bohm effect and the principle of local gauge
invariance for nonrelativistic quantum matter interacting with weak
gravitational fields. The compensating vector fields that are necessitated by
this local gauge principle are shown to be incorporated by the DeWitt minimal
coupling rule. The nonrelativistic Hamiltonian for weak, time-independent
fields interacting with quantum matter is then extended to time-dependent
fields, and applied to problem of the interaction of radiation with
macroscopically coherent quantum systems, including the problem of
gravitational radiation interacting with superconductors. But first we examine
the interaction of EM radiation with superconductors in a parametric oscillator
consisting of a superconducting wire placed at the center of a high Q
superconducting cavity driven by pump microwaves. We find that the threshold
for parametric oscillation for EM microwave generation is much lower for the
separated configuration than the unseparated one, which then leads to an
observable dynamical Casimir effect. We speculate that a separated parametric
oscillator for generating coherent GR microwaves could also be built.Comment: 25 pages, 5 figures, YA80 conference (Chapman University, 2012
On Thermodynamical Properties of Some Coset CFT Backgrounds
We investigate the thermodynamical features of two Lorentzian signature
backgrounds that arise in string theory as exact CFTs and possess more than two
disconnected asymptotic regions: the 2-d charged black hole and the
Nappi-Witten cosmological model. We find multiple smooth disconnected Euclidean
versions of the charged black hole background. They are characterized by
different temperatures and electro-chemical potentials. We show that there is
no straightforward analog of the Hartle-Hawking state that would express these
thermodynamical features. We also obtain multiple Euclidean versions of the
Nappi-Witten cosmological model and study their singularity structure. It
suggests to associate a non-isotropic temperature with this background.Comment: 1+39 pages, harvmac, 8 eps figure
Uplifting and Inflation with D3 Branes
Back-reaction effects can modify the dynamics of mobile D3 branes moving
within type IIB vacua, in a way which has recently become calculable. We
identify some of the ways these effects can alter inflationary scenarios, with
the following three results: (1) By examining how the forces on the brane due
to moduli-stabilizing interactions modify the angular motion of D3 branes
moving in Klebanov-Strassler type throats, we show how previous slow-roll
analyses can remain unchanged for some brane trajectories, while being modified
for other trajectories. These forces cause the D3 brane to sink to the bottom
of the throat except in a narrow region close to the D7 brane, and do not
ameliorate the \eta-problem of slow roll inflation in these throats; (2) We
argue that a recently-proposed back-reaction on the dilaton field can be used
to provide an alternative way of uplifting these compactifications to Minkowski
or De Sitter vacua, without the need for a supersymmetry-breaking anti-D3
brane; and (3) by including also the D-term forces which arise when
supersymmetry-breaking fluxes are included on D7 branes we identify the 4D
supergravity interactions which capture the dynamics of D3 motion in D3/D7
inflationary scenarios. The form of these potentials sheds some light on recent
discussions of how symmetries constrain D term interactions in the low-energy
theory.Comment: JHEP.cls, 35 pages, 3 .eps figure
Soliton Spectrum of Integrable Models with Local Symmetries
The soliton spectrum (massive and massless) of a family of integrable models
with local U(1) and U(1)\otimes U(1) symmetries is studied. These models
represent relevant integrable deformations of SL(2,R) \otimes U(1)^{n-1} - WZW
and SL(2,R) \otimes SL(2,R)\otimes U(1)^{n-2} - WZW models. Their massless
solitons appears as specific topological solutions of the U(1) (or U(1)\otimes
U(1)) - CFTs. The nonconformal analog of the GKO-coset formula is derived and
used in the construction of the composite massive solitons of the ungauged
integrable models.Comment: 44 pages, Latex, 1 eps fig, few misprints corrected. to appear in
JHE
Genetic risk score for intracranial aneurysms: prediction of subarachnoid hemorrhage and role in clinical heterogeneity
Background:Recently, common genetic risk factors for intracranial aneurysm (IA) and aneurysmal subarachnoid hemorrhage (ASAH) were found to explain a large amount of disease heritability and therefore have potential to be used for genetic risk prediction. We constructed a genetic risk score to (1) predict ASAH incidence and IA presence (combined set of unruptured IA and ASAH) and (2) assess its association with patient characteristics. Methods:A genetic risk score incorporating genetic association data for IA and 17 traits related to IA (so-called metaGRS) was created using 1161 IA cases and 407 392 controls from the UK Biobank population study. The metaGRS was validated in combination with risk factors blood pressure, sex, and smoking in 828 IA cases and 68 568 controls from the Nordic HUNT population study. Furthermore, we assessed association between the metaGRS and patient characteristics in a cohort of 5560 IA patients. Results:Per SD increase of metaGRS, the hazard ratio for ASAH incidence was 1.34 (95% CI, 1.20-1.51) and the odds ratio for IA presence 1.09 (95% CI, 1.01-1.18). Upon including the metaGRS on top of clinical risk factors, the concordance index to predict ASAH hazard increased from 0.63 (95% CI, 0.59-0.67) to 0.65 (95% CI, 0.62-0.69), while prediction of IA presence did not improve. The metaGRS was statistically significantly associated with age at ASAH (beta=-4.82x10(-3) per year [95% CI, -6.49x10(-3) to -3.14x10(-3)]; P=1.82x10(-8)), and location of IA at the internal carotid artery (odds ratio=0.92 [95% CI, 0.86-0.98]; P=0.0041). Conclusions:The metaGRS was predictive of ASAH incidence, although with limited added value over clinical risk factors. The metaGRS was not predictive of IA presence. Therefore, we do not recommend using this metaGRS in daily clinical care. Genetic risk does partly explain the clinical heterogeneity of IA warranting prioritization of clinical heterogeneity in future genetic prediction studies of IA and ASAH.Paroxysmal Cerebral Disorder
Robust estimation of bacterial cell count from optical density
Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data
- …