26 research outputs found

    Observation of O+ 4P-4D0 lines in proton aurora over Svalbard

    Get PDF
    Spectra of a proton aurora event show lines of O+ 4P-4D0 multiplet (4639–4696 Å) enhanced relative to the N2 +1N(0,2) compared to normal electron aurora. Conjugate satellite particle measurements are used as input to electron and proton transport models, to show that p/H precipitation is the dominant source of both the O+ and N2 +1N emissions. The emission cross-section of the multiplet in p collisions with O and O2 estimated from published work does not explain the observed O+ brightness, suggesting a higher emission cross-section for low energy p impact on O

    Gas-Phase Protonation of Benzocycloalkenes

    No full text

    Observation of O+ (4P-4D0) lines in electron aurora over Svalbard

    No full text
    This work reports on observations of O+ lines in aurora over Svalbard, Norway. The Spectrographic Imaging Facility measures auroral spectra in three wavelength intervals (H, N+2 1N(0,2) and N+2 1N(1,3)). The oxygen ion 4P-4D0 multiplet (4639–4696 A° ) is blended with the N+2 1N(1,3) band. It is found that in electron aurora, the brightness of this multiplet, is on average, about 0.1 of the N+2 1N(0,2) total brightness. A joint optical and incoherent scatter radar study of an electron aurora event shows that the ratio is enhanced when the ionisation in the upper E-layer (140–190 km) is significant with respect to the E-layer peak below 130 km. Rayed arcs were observed on one such occasion, whereas on other occasions the auroral intensity was below the threshold of the imager. A one-dimensional electron transport model is used to estimate the cross section for production of the multiplet in electron collisions, yielding 0.18×10-18 cm2

    High resolution measurements and modeling of auroral hydrogen emission line profiles

    Get PDF
    Measurements in the visible wavelength range at high spectral resolution (1.3 A° ) have been made at Longyearbyen, Svalbard (15.8 E,78.2 N) during an interval of intense proton precipitation. The shape and Doppler shift of hydrogen Balmer beta line profiles have been compared with model line profiles, using as input ion energy spectra from almost coincident passes of the FAST and DMSP spacecraft. The comparison shows that the simulation contains the important physical processes that produce the profiles, and confirms that measured changes in the shape and peak wavelength of the hydrogen profiles are the result of changing energy input. This combination of high resolution measurements with modeling provides a method of estimating the incoming energy and changes in flux of precipitating protons over Svalbard, for given energy and pitch-angle distributions. Whereas for electron precipitation, information on the incident particles is derived from brightness and brightness ratios which require at least two spectral windows, for proton precipitation the Doppler profile of resulting hydrogen emission is directly related to the energy and energy flux of the incident energetic protons and can be used to gather information about the source region. As well as the expected Doppler shift to shorter wavelengths, the measured profiles have a significant red-shifted component, the result of upward flowing emitting hydrogen atoms
    corecore