1,000 research outputs found

    Electrical Neutrality and Symmetry Restoring Phase Transitions at High Density in a Two-Flavor Nambu-Jona-Lasinio Model

    Full text link
    A general research on chiral symmetry restoring phase transitions at zero temperature and finite chemical potentials under electrical neutrality condition has been conducted in a Nambu-Jona-Lasinio model to describe two-flavor normal quark matter. Depending on that m0/Λm_0/\Lambda, the ratio of dynamical quark mass in vacuum and the 3D momentum cutoff in the loop integrals, is less or greater than 0.413, the phase transition will be second or first order. A complete phase diagram of uu quark chemical potential versus m0m_0 is given. With the electrical neutrality constraint, the region where second order phase transition happens will be wider than the one without electrical neutrality limitation. The results also show that, for the value of m0/Λm_0/\Lambda from QCD phenomenology, the phase transition must be first order.Comment: 9 pages, 1 figur

    Quark-Antiquark and Diquark Condensates in Vacuum in a 2D Two-Flavor Gross-Neveu Model

    Get PDF
    The analysis based on the renormalized effective potential indicates that, similar to in the 4D two-flavor Nambu-Jona-Lasinio (NJL) model, in a 2D two-flavor Gross-Neveu model, the interplay between the quark-antiquark and the diquark condensates in vacuum also depends on GS/HSG_S/H_S, the ratio of the coupling constants in scalar quark-antiquark and scalar diquark channel. Only the pure quark-antiquark condensates exist if GS/HS>2/3G_S/H_S>2/3 which is just the ratio of the color numbers of the quarks participating in the diquark and quark-antiquark condensates. The two condensates will coexist if 0<GS/HS<2/30<G_S/H_S<2/3. However, different from the 4D NJL model, the pure diquark condensates arise only at GS/HS=0G_S/H_S=0 and are not in a possibly finite region of GS/HSG_S/H_S below 2/3.Comment: 6 pages, revtex4, no figur

    Identity of the imaginary-time and real-time thermal propagators for scalar bound states in a one-generation Nambu-Jona-Lasinio model

    Full text link
    By rigorous reanalysis of the results, we have proven that the propagators at finite temperature for scalar bound states in one-generation fermion condensate scheme of electroweak symmetry breaking are in fact identical in the imaginary-time and the real-time formalism. This dismisses the doubt about possible discrepancy between the two formalisms in this problem. Identity of the derived thermal transformation matrices of the real-time matrix propagators for scalar bound states without and with chemical potential and the ones for corresponding elementary scalar particles shows similarity of thermodynamic property between the two types of particles. Only one former inference is modified, i.e. when the two flavors of fermions have unequal nonzero masses, the amplitude of the composite Higgs particle will decay instead grow in time.Comment: 5 pages, revtex4, no figure

    Quantum trajectory approach to stochastically-induced quantum interference effects in coherently-driven two-level atoms

    Get PDF
    Stochastic perturbation of two-level atoms strongly driven by a coherent light field is analyzed by the quantum trajectory method. A new method is developed for calculating the resonance fluorescence spectra from numerical simulations. It is shown that in the case of dominant incoherent perturbation, the stochastic noise can unexpectedly create phase correlation between the neighboring atomic dressed states. This phase correlation is responsible for quantum interference between the related transitions resulting in anomalous modifications of the resonance fluorescence spectra.Comment: paper accepted for publicatio

    Predicting leptonic CP violation in the light of Daya Bay result

    Full text link
    In the light of the recent Daya Bay result the reactor angle is about 9 degrees, we reconsider the model presented in arXiv:1005.3482 showing that, when all neutrino oscillation parameters are taken at their best fit values of Schwetz et al and the reactor angle to be the central value of Daya Bay, the predicted value of the CP phase is approximately 45 degrees.Comment: 4 pages, 2 figures, update of arXiv:1005.348

    Magnetic properties of a new molecular-based spin-ladder system: (5IAP)2CuBr4*2H2O

    Full text link
    We have synthesized and characterized a new spin-1/2 Heisenberg antiferromagnetic ladder: bis 5-iodo-2-aminopyridinium tetrabromocuprate(II) dihydrate. X-ray diffraction studies show the structure of the compound to consist of well isolated stacked ladders and the interaction between the Cu(2+) atoms to be due to direct Br...Br contacts. Magnetic susceptibility and magnetization studies show the compound to be in the strong-coupling limit, with the interaction along the rungs (J' ~ 13 K) much greater than the interaction along the rails (J ~ 1 K). Magnetic critical fields are observed near 8.3 T and 10.4 T, respectively, establishing the existence of the energy gap.Comment: 10 pages, 4 figures, submitted to Phys. Rev. B Figure 4 did not print. *.eps files replaced with figures.ps fil

    Polariton Analysis of a Four-Level Atom Strongly Coupled to a Cavity Mode

    Get PDF
    We present a complete analytical solution for a single four-level atom strongly coupled to a cavity field mode and driven by external coherent laser fields. The four-level atomic system consists of a three-level subsystem in an EIT configuration, plus an additional atomic level; this system has been predicted to exhibit a photon blockade effect. The solution is presented in terms of polaritons. An effective Hamiltonian obtained by this procedure is analyzed from the viewpoint of an effective two-level system, and the dynamic Stark splitting of dressed states is discussed. The fluorescence spectrum of light exiting the cavity mode is analyzed and relevant transitions identified.Comment: 12 pages, 9 figure

    Approach to the semiconductor cavity QED in high-Q regimes with q-deformed boson

    Full text link
    The high density Frenkel exciton which interacts with a single mode microcavity field is dealed with in the framework of the q-deformed boson. It is shown that the q-defomation of bosonic commutation relations is satisfied naturally by the exciton operators when the low density limit is deviated. An analytical expression of the physical spectrum for the exciton is given by using of the dressed states of the cavity field and the exciton. We also give the numerical study and compare the theoretical results with the experimental resultsComment: 6 pages, 2 figure

    Stability of Non-Abelian Black Holes

    Full text link
    Two types of self-gravitating particle solutions found in several theories with non-Abelian fields are smoothly connected by a family of non-trivial black holes. There exists a maximum point of the black hole entropy, where the stability of solutions changes. This criterion is universal, and the changes in stability follow from a catastrophe-theoretic analysis of the potential function defined by black hole entropy.Comment: 4 Figures to be sent on request,8 pages, WU-AP/33/9

    Quantum jumps induced by the center-of-mass motion of a trapped atom

    Full text link
    We theoretically study the occurrence of quantum jumps in the resonance fluorescence of a trapped atom. Here, the atom is laser cooled in a configuration of level such that the occurrence of a quantum jump is associated to a change of the vibrational center-of-mass motion by one phonon. The statistics of the occurrence of the dark fluorescence period is studied as a function of the physical parameters and the corresponding features in the spectrum of resonance fluorescence are identified. We discuss the information which can be extracted on the atomic motion from the observation of a quantum jump in the considered setup
    corecore