153 research outputs found

    The Frenet Serret Description of Gyroscopic Precession

    Get PDF
    The phenomenon of gyroscopic precession is studied within the framework of Frenet-Serret formalism adapted to quasi-Killing trajectories. Its relation to the congruence vorticity is highlighted with particular reference to the irrotational congruence admitted by the stationary, axisymmetric spacetime. General precession formulae are obtained for circular orbits with arbitrary constant angular speeds. By successive reduction, different types of precessions are derived for the Kerr - Schwarzschild - Minkowski spacetime family. The phenomenon is studied in the case of other interesting spacetimes, such as the De Sitter and G\"{o}del universes as well as the general stationary, cylindrical, vacuum spacetimes.Comment: 37 pages, Paper in Late

    Application of energy and angular momentum balance to gravitational radiation reaction for binary systems with spin-orbit coupling

    Full text link
    We study gravitational radiation reaction in the equations of motion for binary systems with spin-orbit coupling, at order (v/c)^7 beyond Newtonian gravity, or O(v/c)^2 beyond the leading radiation reaction effects for non-spinning bodies. We use expressions for the energy and angular momentum flux at infinity that include spin-orbit corrections, together with an assumption of energy and angular momentum balance, to derive equations of motion that are valid for general orbits and for a class of coordinate gauges. We show that the equations of motion are compatible with those derived earlier by a direct calculation.Comment: 12 pages, submitted to General Relativity and Gravitatio

    The Dirac Equation Is Separable On The Dyon Black Hole Metric

    Get PDF
    Using the tetrad formalism, we carry out the separation of variables for the massive complex Dirac equation in the gravitational and electromagnetic field of a four-parameter (mass, angular momentum, electric and magnetic charges) black hole.Comment: 13 page

    Quasinormal mode characterization of evaporating mini black holes

    Get PDF
    According to recent theoretical developments, it might be possible to produce mini black holes in the high energy experiments in the LHC at CERN. We propose here a model based on the nn-dimensional Vaidya metric in double null coordinates for these decaying black holes. The associated quasinormal modes are considered. It is shown that only in the very last instants of the evaporation process the stationary regime for the quasinormal modes is broken, implying specific power spectra for the perturbations around these mini black-holes. From scattered fields one could recover, in principle, the black hole parameters as well as the number of extra dimensions. The still mysterious final fate of such objects should not alter significantly our main conclusions.Comment: v4: 9 pages, 3 figures. Minor correction

    Covariant Calculation of General Relativistic Effects in an Orbiting Gyroscope Experiment

    Get PDF
    We carry out a covariant calculation of the measurable relativistic effects in an orbiting gyroscope experiment. The experiment, currently known as Gravity Probe B, compares the spin directions of an array of spinning gyroscopes with the optical axis of a telescope, all housed in a spacecraft that rolls about the optical axis. The spacecraft is steered so that the telescope always points toward a known guide star. We calculate the variation in the spin directions relative to readout loops rigidly fixed in the spacecraft, and express the variations in terms of quantities that can be measured, to sufficient accuracy, using an Earth-centered coordinate system. The measurable effects include the aberration of starlight, the geodetic precession caused by space curvature, the frame-dragging effect caused by the rotation of the Earth and the deflection of light by the Sun.Comment: 7 pages, 1 figure, to be submitted to Phys. Rev.

    Higher dimensional radiation collapse and cosmic censorship

    Get PDF
    We study the occurrence of naked singularities in the spherically symmetric collapse of radiation shells in a higher dimensional spacetime. The necessary conditions for the formation of a naked singularity or a black hole are obtained. The naked singularities are found to be strong in the Tipler's sense and thus violating cosmic censorship conjecture.Comment: 4 pages, ReVTeX, Phys Rev D Vol 62 107502 (2000

    Quasinormal modes for tensor and vector type perturbation of Gauss Bonnet black holes using third order WKB approach

    Full text link
    We obtain the quasinormal modes for tensor perturbations of Gauss-Bonnet (GB) black holes in d=5,7,8d=5, 7, 8 dimensions and vector perturbations in d=5,6,7d = 5, 6, 7 and 8 dimensions using third order WKB formalism. The tensor perturbation for black holes in d=6d=6 is not considered because of the fact that it is unstable to tensor mode perturbations. In the case of uncharged GB black hole, for both tensor and vector perturbations, the real part of the QN frequency increases as the Gauss-Bonnet coupling (α\alpha') increases. The imaginary part first decreases upto a certain value of α\alpha' and then increases with α\alpha' for both tensor and vector perturbations. For larger values of α\alpha', the QN frequencies for vector perturbation differs slightly from the QN frequencies for tensorial one. It has also been shown that as α0\alpha' \to 0, the quasinormal mode frequency for tensor and vector perturbation of the Schwarzschild black hole can be obtained. We have also calculated the quasinormal spectrum of the charged GB black hole for tensor perturbations. Here we have found that the real oscillation frequency increases, while the imaginary part of the frequency falls with the increase of the charge. We also show that the quasinormal frequencies for scalar field perturbations and the tensor gravitational perturbations do not match as was claimed in the literature. The difference in the result increases if we increase the GB coupling.Comment: 17 pages, 11 figures, change in title and abstract, new equations and results added for QN frequencies for vector perturbations, new referencees adde

    Radiating black hole solutions in arbitrary dimensions

    Full text link
    We prove a theorem that characterizes a large family of non-static solutions to Einstein equations in NN-dimensional space-time, representing, in general, spherically symmetric Type II fluid. It is shown that the best known Vaidya-based (radiating) black hole solutions to Einstein equations, in both four dimensions (4D) and higher dimensions (HD), are particular cases from this family. The spherically symmetric static black hole solutions for Type I fluid can also be retrieved. A brief discussion on the energy conditions, singularities and horizons is provided.Comment: RevTeX 9 pages, no figure

    Higher dimensional dust collapse with a cosmological constant

    Get PDF
    The general solution of the Einstein equation for higher dimensional (HD) spherically symmetric collapse of inhomogeneous dust in presence of a cosmological term, i.e., exact interior solutions of the Einstein field equations is presented for the HD Tolman-Bondi metrics imbedded in a de Sitter background. The solution is then matched to exterior HD Scwarschild-de Sitter. A brief discussion on the causal structure singularities and horizons is provided. It turns out that the collapse proceed in the same way as in the Minkowski background, i.e., the strong curvature naked singularities form and that the higher dimensions seem to favor black holes rather than naked singularities.Comment: 7 Pages, no figure
    corecore