20 research outputs found

    Avoidance Control on Time Scales

    Full text link
    We consider dynamic systems on time scales under the control of two agents. One of the agents desires to keep the state of the system out of a given set regardless of the other agent's actions. Leitmann's avoidance conditions are proved to be valid for dynamic systems evolving on an arbitrary time scale.Comment: Revised edition in JOTA format. To appear in J. Optim. Theory Appl. 145 (2010), no. 3. In Pres

    Guaranteed and randomized methods for stability analysis of uncertain metabolic networks

    Get PDF
    A persistent problem hampering our understanding of the dynamics of large-scale metabolic networks is the lack of experimentally determined kinetic parameters that are necessary to build computationalmodels of biochemical processes. To overcome some of the limitations imposed by absent or incomplete kinetic data, structural kinetic modeling (SKM) was proposed recently as an intermediate approach between stoichiometric analysis and a full kinetic description. SKM extends stationary flux-balance analysis (FBA) by a local stability analysis utilizing an appropriate parametrization of the Jacobian matrix. To characterize the Jacobian, we utilize results from robust control theory to determine subintervals of the Jacobian’ entries that correspond to asymptotically stable metabolic states. Furthermore, we propose an efficient sampling scheme in combination with methods from computational geometry to sketch the stability region. A glycolytic pathway model comprising 12 uncertain parameters is used to assess the feasibility of the method
    corecore