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Abstract A persistent problem hampering our understanding of the dynamics of
large-scale metabolic networks is the lack of experimentally determined kinetic pa-
rameters that are necessary to build computational models of biochemical processes.
To overcome some of the limitations imposed by absent or incomplete kinetic data,
structural kinetic modeling (SKM) was proposed recently as an intermediate ap-
proach between stoichiometric analysis and a full kinetic description. SKM extends
stationary flux-balance analysis (FBA) by a local stability analysis utilizing an ap-
propriate parametrization of the Jacobian matrix. To characterize the Jacobian, we
utilize results from robust control theory to determine subintervals of the Jacobian’
entries that correspond to asymptotically stable metabolic states. Furthermore, we
propose an efficient sampling scheme in combination with methods from computa-
tional geometry to sketch the stability region. A glycolytic pathway model compris-
ing 12 uncertain parameters is used to assess the feasibility of the method.

1 Modeling metabolic networks

Cellular metabolism, defined as the orchestrated biochemical interconversion of
small molecules by dedicated proteins, is an important aspect of cellular physiology
and of outstanding interest for many biotechnological and medical applications. In
the past decades, great strides have been made to elucidate and compile the list of
the biochemical reaction taking place in living cells and almost comprehensive sto-
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ichiometric models for several model organisms such as the S. cerevisiae or E. coli,
are now available [10]. However, to obtain a true understanding of cellular function
and organization a mere list of parts is not enough. In this respect, the construction
of mathematical models is an indispensable tool to study – and eventually under-
stand – how the parts of a metabolic network interact and function as an integrated
whole.

Current approaches to metabolic modeling are characterized by a dichotomy of
large-scale constraint-based stoichiometric models on the one hand, and detailed ki-
netic models of small subsystems on the other hand. The advantage of topological
and constraint-based methods is that they only require stoichiometric information,
making them applicable to large, up to ‘genome-scale’, systems. Most prominently,
flux-balance analysis (FBA) makes use of the mass conservation constraints to iden-
tify possible flux distributions that fulfill a given objective function, such as max-
imal ATP production or maximal biomass generation. Although one of the most
successful approaches to date, the downside of FBA is that it cannot provide any
information about the dynamical properties of the metabolic system. In contrast, the
description of dynamics requires the construction of a detailed kinetic model of the
network, usually in terms of ordinary differential equations. However, the construc-
tion of such explicit kinetic models of metabolism is based on detailed quantitative
information on kinetic parameters and rate equations, information that is only rarely
available in practice.

To overcome some of the difficulties imposed by the lack of information on ki-
netic parameters, there has been increasing interest in heuristic and semi-quantitative
methods to describe the dynamics of large-scale metabolic networks in the face of
uncertain kinetic data [23, 22, 20]. Specifically, structural kinetic modeling (SKM)
proposes to augment the constraint-based analysis by a local stability analysis uti-
lizing an appropriate parametrization of the Jacobian matrix [21]. The approach is
based on the observation that in many cases a detailed kinetic model is not neces-
sary. Rather, a large number of dynamical properties, such as control coefficients,
the stability of states, transitions to oscillatory regions, among various others, are
readily available using only a linear approximation of the system. SKM therefore
seeks to derive stringent bounds on the entries of the Jacobian matrix, based on
available phenotypic data and biophysical constraints, to enable a computational
analysis in the absence of further kinetic information. We emphasize that SKM is
a data-driven approach, taking another perspective than classical nonlinear dynam-
ics. More specifically, SKM starts out with a given, experimentally measured steady
state and asks for the underlying parameter region supporting this particular state.

In this work, we discuss an extension of SKM utilizing methods from robust
stability theory [4, 1] that allows to determine subintervals of the Jacobian entries of
a SKM model corresponding to stable metabolic states. To this end, we believe that
the proposed reasoning about entire sets of models is an adequate semi-quantitative
approach [18] to analyze biochemical models in general.

The paper is organized as follows. Section 2 provides an introduction to the SKM
framework. The applied guaranteed methods from robust control as well as a novel
random sampling scheme are discussed in Section 3. An application of the sampling
method is given in Section 4, while Section 5 draws conclusions.
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2 Structural kinetic modeling

SKM draws upon the fact that, even in the absence of detailed kinetic information,
questions with respect to stability of the metabolic operating point can be addressed.
To this end, we consider a metabolic network whose time-dependent behavior is
described by an ordinary differential equation of the form

dS
dt
≡ Ṡ = Nv(S,k) , (1)

with S ∈RN
+ denoting the vector of concentration of all involved species, N ∈ ZN×L

the stoichiometric matrix, v : RN
+×RM

+ →RL
+ the parametric rate laws and k ∈RM

+
a vector comprising all kinetic parameters. We assume that the network has at least
one non-zero steady state at concentration S0, which does not necessarily has to be
stable. In this case, we can equivalently write

Ṡi

S0
i

=
R

∑
j=1

Ni j
v j(S0)

S0
i

v j(S)
v j(S0)

. (2)

Introducing concentrations that are normalized by the steady state concentration
xi = Si

S0
i

one obtains

ẋ = ΛΛΛ µµµ(x), (3)

with the constant matrix Λi j ≡Ni j
v j(S0)

S0
i

and the vector of normalized fluxes µ j(x)≡
v j(S)
v j(S0) . A linearization of the system at the steady state x = 1 yields with ΛΛΛ µµµ(1) = 0
a linear model with states zi

żi =
L

∑
j=1

N

∑
k=1

Λi j
∂ µ j(z)

∂ zk

∣∣∣∣
z=1

(zk−1). (4)

Introducing the matrix Θk j ≡
∂ µ j(z)

∂ zk

∣∣∣
z=1

we obtain

ż = ΛΛΛΘΘΘ(z−1). (5)

The stability of the nonlinear system specified by (3) at x = 1 is thus determined
by the eigenvalues of the matrix ΛΛΛΘΘΘ , which is equivalent to the (scaled) Jaco-
bian matrix. Our further analysis rests upon a detailed interpretation of the ma-
trices ΛΛΛ and ΘΘΘ . In particular, the matrix ΛΛΛ is entirely specified by stoichiometric
information, along with knowledge of a stationary metabolic state, characterized
by a set of stationary concentrations S0 and fluxes v0 = v(S0). The latter satisfy
the steady-state constraint Nv0 = 0. We note that large-scale measurements and the
characterization of metabolic systems in terms of concentrations (metabolomics)
and fluxes (fluxomics) are now almost standard techniques in the analysis of cellular
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metabolism [14, 24, 17], making the matrix ΛΛΛ – at least in principle – accessible to
direct experimentation.

The interpretation of the elements of ΘΘΘ is slightly more intricate. Every entry
of the matrix ΘΘΘ specifies the derivatives of the normalized rate law with respect
to the scaled concentrations, and can be interpreted as the (dimensionless) relative
saturation level of one particular reaction with respect to one particular substrate
concentration. Importantly, for most typical rate laws the elements of ΘΘΘ are con-
fined to well-defined intervals that are independent of the respective metabolic state
or mathematical details of the rate equation. We note that the elements of ΘΘΘ are
analogous to logarithmic derivatives and are closely related to the scaled elasticity
coefficients in Metabolic Control Analysis [12].

3 Stability of uncertain linear systems

We are now in the position to apply the ideas of robustness analysis for linear sys-
tems to the Jacobian matrix J≡ΛΛΛΘΘΘ of our linearized metabolic network. Allowing
uncertainty in the kinetic rate law corresponds here to an uncertainty about the sat-
uration matrix ΘΘΘ . Thus we define the set of Jacobians as

J([ΘΘΘ ]) =
{

J |J = ΛΛΛΘΘΘ , ΘΘΘ ∈ [ΘΘΘ ] ∈ IRL×N} , (6)

where is IR is the set of all real intervals. Thus an element [ΘΘΘ ]∈ IRN×L is an interval
matrix

[ΘΘΘ ]≡
{

ΘΘΘ |Θi j ∈ [Θ i j,Θ̄i j], Θ i j ≤ Θ̄i j, ∀(i, j)
}

,

the bounds of which are determined by biophysical constraints. In practice not every
entry of ΘΘΘ is uncertain and one seeks a representation of the Jacobian as a function
solely of the uncertain vector θθθ ∈ RM

J(θθθ) = J0 +
M

∑
i=1

θiJi = J0 +ΛΛΛ

M

∑
i=1

θiTi (7)

with template matrices Ti ∈ {0,1}N×L. We do not exclude the case that one uncer-
tain parameter controls multiple entries of ΘΘΘ . Alternatively, the parametric Jacobian
may be expressed as a convex matrix polytope with

J(θθθ) ∈ co{J̃1, . . . , J̃K} ≡

{
J

∣∣∣∣∣J =
K

∑
i=1

αiJ̃i,
K

∑
i=1

αi = 1,αi ≥ 0, i ∈ {1, . . . ,K}

}
,

with co{·}, the convex hull. The image of the saturation hyper-rectangle [ΘΘΘ ] under
ΛΛΛ is, in general, not a rectangle in the space of Jacobians and vertex points of [ΘΘΘ ]
can be mapped to the interior of the Jacobian polytope. Thus, we have K ≤ 2M

assuming that L≥ N, which is normally the case for reaction networks.
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3.1 Guaranteed methods

In the following, robust control methods are discussed that we consider particularly
suitable for the SKM framework. They determine saturation subintervals, where sta-
bility of every member is guaranteed. The application of those methods to a model
of the glycolytic pathway within the SKM framework is presented in [16].

Given a single Jacobian J ∈ RN×N of a linearized dynamics, stability can be
determined by checking the Hurwitz property, i.e., whether all roots of the char-
acteristic polynomial p(λ ) = det(J−λ I) have negative real parts. For the case of
parametric Jacobians J(θθθ) the following theorem due to Kharitonov [15] can be
utilized.

Theorem 1. Every polynomial

p(λ ,c) = c0 + c1λ + · · ·+ cn−1λ
n−1 + cnλ

n (8)

of degree n which is an instance of the polynomial set p(λ , [c]) = {p(λ ,c) |c ∈ [c]}
and cn > 0 is a Hurwitz polynomial, if and only if the associated following four
Kharitonov polynomials

p+−(λ ,c) = c̄0 + c1λ + c2λ
2 + c̄3λ

3 + c̄4λ
4 + c5λ

5 + · · ·
p++(λ ,c) = c̄0 + c̄1λ + c2λ

2 + c3λ
3 + c̄4λ

4 + c̄5λ
5 + · · ·

p−+(λ ,c) = c0 + c̄1λ + c̄2λ
2 + c3λ

3 + c4λ
4 + c̄5λ

5 + · · ·
p−−(λ ,c) = c0 + c1λ + c̄2λ

2 + c̄3λ
3 + c4λ

4 + c5λ
5 + · · ·

(9)

are Hurwitz polynomials.

The theorem gives a necessary and sufficient condition for stability. However, the
necessity is lost if the coefficients c are not independent as it is the case for the
characteristic polynomial p(λ ,θθθ) = det(J(θθθ)−λ I). Thus, the theorem just provides
a sufficient condition, and gives conservative results in general. In practice, one can
obtain the overbounding coefficient intervals [c] by computing the characteristic
polynomial with θθθ ∈ [θθθ ] using interval arithmetic [13, 16].

Quadratic stability of a polytopic linear system with J([θθθ ]) is defined that for
each member J(θθθ) ∈ co{J̃1, . . . , J̃K} one can find one common quadratic Lyapunov
function. With that, quadratic stability is stronger than testing the Hurwitz stabil-
ity of each member. Thus, for an uncertain system that is quadratically stable all
members are Hurwitz stable, but a system that is not quadratically stable can still
be stable for all members. Quadratic stability thus provides just another means to
obtain conservative stability bounds. However, quadratic stability, by itself, can be
determined without conservatism with a finite number of tests.

Theorem 2. A linear polytopic system is quadratically stable if and only if all its
vertex systems are stable.

It remains to find a common Lyapunov function for all vertex systems. This can be
done by solving the following K linear matrix inequalities simultaneously
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J̃T
i P+PJ̃i ≺ 0, (10)

for i ∈ {1, . . . ,K} and P � 0, the common positive-definite Lyapunov matrix. The
proof of the theorem is based on the observation that any positive linear combination
of negative definite terms is again negative definite

J̃T (ααα)P+PJ̃(ααα) =
K

∑
i=1

αi(J̃T
i P+PJ̃i)≺ 0 with

K

∑
i=1

αi = 1 and αi ≥ 0,

i ∈ {1, . . . ,K} and ααα ≡ (α1, . . . ,αK ).
In contrast to quadratic stability, affine quadratic stability searches for a quadratic

parameter-dependent Lyapunov function, where the parameter dependency is as-
sumed to be affine

P(θθθ) = P0 +
M

∑
j=1

θ jP j. (11)

Writing it in terms of polytopes we seek a Lyapunov matrix such that

J̃(ααα)T P̃(ααα)+ P̃(ααα)J̃(ααα)≺ 0 (12)

and P̃(ααα)� 0 for any convex combination ααα . We used the corresponding polytopic
representation of the affine set (11)

P̃(ααα) =
K

∑
i=1

αiP̃i where
K

∑
k=1

αk = 1 and αk ≥ 0, (13)

with the vertex matrices P̃i. Affine quadratic stability leads to bilinear matrix in-
equalities that are difficult to solve numerically. However, forcing another constraint
on the Lyapunov function, namely multi-convexity [2, 11] one arrives at vertex con-
ditions similar to the one of quadratic stability

J̃T
i P̃i + P̃iJ̃i ≺ 0

P̃i � 0

JT
j P j +P jJ j ≺ 0

(14)

for all i ∈ {1, . . . ,K} and j ∈ {1, . . .M}, where we used the affine representation of
(7). The incorporation of multi-convexity (third inequality) introduces conservatism
but yields a set of linear matrix inequalities that can now be solved efficiently using
semi-definite programming.

3.2 Efficient random sampling

A downside of guaranteed methods of robust control is that they, in general, provide
binary answers regarding stability. For instance the semidefinite program underly-
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ing quadratic stability qualifies the proposed parameter interval [θθθ ] as feasible or
not. Thus, these methods do not lend themselves to locate the stable region or to
determine the most constraining parameter dimensions. Quadratic stability can be
extended to return a scalar variable, for which a proposal interval need to scaled uni-
formly around an expansion in order to meet quadratic stability [6]. However, also
this requires a priori information about the proper expansion point and side-length
ratios of the hyper-rectangle. Moreover, determination of the maximum-volume
hyper-rectangle that can be inscribed into a closed surface, itself requires the so-
lution of a nonlinear program. Multi-dimensional bisection methods is used in [16]
to expand hyper-rectangles based on the binary decisions returned by the guaranteed
methods of Section 3.1. However, such an approach does not scale well with the pa-
rameter dimension and also does not guarantee to converge to the maximal-volume
rectangle, on top of the conservatism of those guaranteed methods.

The procedure outlined in the following aims to find a non-guaranteed hyper-
rectangle through advanced random sampling of the stability region. Sketching the
stability region in this way, also allows one to identify parameter combinations that
are most constraining in terms of stability. This can be achieved through a minor
component analysis (MCA) [9]. Besides its relevance in its own rights, the obtained
rectangle can then be proposed to a guaranteed method. Even if a downscaling of
the rectangle is necessary due to conservatism of the guaranteed method or due to
the overapproximation of the stability region by the sampling method, the expansion
center and the side-lengths ratios are likely to be representative.
Sampling. We randomly sample one-dimensional information through the fol-
lowing theorem that provides sufficient and necessary conditions in case of one-
dimensional uncertainty [5].

Theorem 3. Consider the affine uncertain system J(ω) = J0 +ωJ1, with J0 Hurwitz
stable and ω ∈ [ω, ω̄] ∈ IR. The matrix J(ω) is robustly stable if and only if ω ∈
[ω∗, ω̄∗] with

ω
∗ =

1
λ
−
min[−(J0⊕J0)−1(J1⊕J1)]

ω̄
∗ =

1
λ

+
max[−(J0⊕J0)−1(J1⊕J1)]

with the Kronecker sum J0⊕ J0 ≡ J0⊗ IN + IN ⊗ J0 and with λ
−
min(·) and λ+

max(·)
the minimum and maximum of the strictly negative and strictly positive set of eigen-
values of a matrix.

With a nominal parameter set that corresponds to a stable Jacobian J0 the theorem
provides a means to sample the stability region around this expansion point without
any conservatism. We do this by shooting Bialas rays in random directions θθθ from
this expansion point. In vector notation this reads

vec(J(ω)) = (I⊗ΛΛΛ)vec(ΘΘΘ) = vec(J0)+ω(I⊗ΛΛΛ)Rθθθ , (15)

with the appropriate rearrangement matrix R ∈ {0,1}LN×M . The probability dis-
tribution over ray directions should be chosen such, that the intersection points
between rays and stability boundary are distributed uniformly. Choosing random
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directions from an expansion point within a surface that result in a uniform distribu-
tion at that surface is a known problem; see for instance the problem of uniformly
sampling the surface of a n-sphere [19]. However, in the absence of information on
the surface to be sampled, we propose to resort to a sequential Monte-Carlo algo-
rithm that generates a uniform distribution at a bounding rectangle [θθθ ] ⊆ [θθθ ]0 that
is updated during sampling. We refer to [θθθ ]0 as the outer interval determined by
biophysical bounds.
Dimensionality reduction. Several expansion centers are chosen according to a
tree structure with predetermined depth and degree. Parameter combinations that
are constrained in terms of stability are revealed by computing an eigendecompo-
sition of the covariance matrix of the sampled line set (see for instance Fig. 2 in
Section 4). The eigendirections corresponding to small eigenvalues indicate con-
strained parameter combinations (minor components) [9]. Inner products between
eigendirections and basis vectors of the parameter coordinates allow to identify sin-
gle parameters, that are most aligned with these constrained directions. This opens
up the possibility for model reduction, where interval stability is investigated only
for the most constrained parameters.
Rectangle Inscription. In order to be able to inscribe a hyper-rectangle into a sam-
pled closed surface, the samples need to be connected to give closed surface. The
most natural choice is to construct the convex hull, i.e. the smallest convex set con-
taining the sampled points. The convex hull is a convex polytope – or bounded
polyhedron and thus has besides its vertex representation also a representation as a
set of half-spaces (see Minkowski-Weyl theorem). We define a polyhedron P as

P ≡
{

θθθ ∈ RM ∣∣Aθθθ ≤ b, A ∈ RQ×M, b ∈ RQ} ,

with Q the number of half-spaces. The problem of inscribing the maximal-volume
rectangle into P is convex and can thus be solved efficiently on polynomial time
[7]. Denoting the interval of the inscribed box as [θθθ ]∈ IRM we can write the convex
program as

max
[θθθ ]

logdetW([θθθ ])

subject to
[θθθ ]⊆P,

(16)

with the diagonal matrix W(·) denoting the interval width W([θθθ ])= diag{sup([θθθ ])−
inf([θθθ ])}. Instead of having 2M linear inequalities for every vertex of [θθθ ], the con-
straint [θθθ ] ⊆P can be expressed more efficiently with 2M inequalities [7]. The
plausibility of the obtained optimal [θθθ ] rest upon the assumption that the intersec-
tion of stability region and biophysical bounding box [θθθ ]0 can well be encoded
through a convex polytope.

Utilizing the exact convex hull, i.e. the tightest convex enclosure, introduces scal-
ability issues in high dimensions. The worst case complexity of an optimal convex
hull algorithm was shown to be O(nbM/2c) for M ≥ 4, where n is the number of
sample points. However, the worst-case is rarely encountered and the actual com-
plexity depends on the number of necessary inequalities Q, the order of which can
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vary from O(1) to O(nbM/2c). Taking Q into account, a polynomial algorithm in
n,M and Q was shown to exist for the non-degenerate case [3].

4 Application

We apply the proposed sampling method of Section 3.2 to a medium-scale model of
glycolysis, depicted in Fig. 1. Transformed to the SKM representation of Section 2,
the model has 12 non-zero entries in the saturation matrix ΘΘΘ . For all reactions, ex-
cept one, we assume standard Michaelis-Menten kinetics giving rise to biophysical
bounds [θi]0 = [0,1] for i ∈ {2, . . . ,12}. For the first reaction, the conversion of Glu-
cose (Glc) into fructose-1,6-biphosphate (FBP) we implement the known inhibitory
effect of ATP, resulting in [θ1]0 = [−3,1]. We sketch the feasible region charac-

Glc

2ATP 2ADP

FBP TP

N
AD

H
N
AD

+

BPG

2A
TP

2A
D
P

Pyr

N
AD

+

N
AD

H

N
AD

H

N
AD

+

EtOH

ATP ADP

Fig. 1 Medium-scale model of the yeast glycolytic pathway comprising 8 reactions giving rise to
12 saturation parameters in the framework of structural kinetic modeling.

terized as the intersection of the stability domain with the biophysical bounding
box using 104 Bialas rays with a flat tree configuration of depth one and degree 100.
Figure 2(a) shows the eigendecomposition of the covariance matrix C in normalized
coordinates, indicating one tightly constrained parameter combination. Inner prod-
uct computation reveals that direction θ1 is strongly aligned with the corresponding
eigendirection.

To illustrate the method we perform a model reduction retaining only the seven
most constrained parameter dimensions as interval variables and adjusting the re-
maining ones to their nominal value, chosen to be the midpoint of [θθθ ]0. The ob-
tained stability interval are depicted in Fig. 2(b). The convex hull and the obtained 7-
dimensional stability rectangle, down-projected onto the first three most constrained
parameter dimension is shown in Fig. 3.

5 Conclusions

The scarcity of kinetic information for metabolic reactions rarely allows for the de-
termination of detailed kinetic rate laws for a metabolic model. We combine the
local stability analysis of structural kinetic modeling with interval methods to com-
pute guaranteed and non-guaranteed stability intervals for the saturation levels of
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1 3 4 5 6 8 12
-3

-2

-1

0

1

1 2 3 4 5 6 7 8 9 10 11 12
0

0.005

0.01

0.015

0.02

(a) (b)

Fig. 2 (a) Mean and standard deviation of the spectrum for the covariance matrix C of the stable
12-dimensional parameter region – based on 100 runs each with 104 Bialas rays (tree of depths
one and degree 100). (b) biophysical bounding boxes and obtained stable intervals (gray) for pa-
rameters retained after model reduction.

Fig. 3 Maximum-volume hyper-rectangle (green) inscribed in the convex hull (brown) and bio-
physical bounding box [θθθ ]0 (yellow); a few of the 104 rays (blue) used to sketch the stability
region of the reduced 7-dimensional interval system; down-projection to coordinates that are the
most aligned to the directions of the first three minor components.

the involved reactions. We provide an efficient sampling algorithm to sketch high-
dimensional stability regions and apply methods from statistics and computational
geometry to obtain non-guaranteed stability intervals. The computed stability inter-
val may serve as a proposal for the binary test of guaranteed methods from robust
control. To alleviate scalability issues in the applied computational geometry meth-
ods, one may resort to randomized algorithms, for instance such as the randomized
incremental construction of the convex hull [8].

Acknowledgements HK acknowledges the support from the Swiss National Science Foundation,
grant no. 200020-117975/1. SA was supported by the Laboratory of Nonlinear Systems, EPFL



Stability analysis of uncertain metabolic networks 11

within the Summer@EPFL internship program. RS is supported by the grant FORSYS-Partner:
Systems biology of cyanobacterial biofuel production, as well as by the rearch initiative SysMO:
MOSES (Grant Reference: BBF0035281) and SulfoSys (Grant Reference: BBF0035361).

References

1. Ackermann, J., Bartlett, A., Kaesbauer, D., Sienel, W., Steinhauser, W.: Robust Control: Sys-
tems with Uncertain Physical Parameters. Springer-Verlag, New York, USA (2001)

2. Apkarian, P., Tuan, H.D.: Parametrized LMIs in control theory. SIAM J. Control Optim. 38(4),
1241–1264 (2000)

3. Avis, D., Bremner, D., Seidel, R.: How good are convex hull algorithms. Comput. Geom. Th.
Appl. 7, 265–302 (1997)

4. Barmish, B.R.: New Tools for Robustness of Linear Systems. Macmillan Publishing Company
(1994)

5. Bialas, S.: A necessary and sufficient condition for the stability of convex combinations of
stable polynomials or matrices. Bull. Pol. Acad. Sci. 33, 473–480 (1985)

6. Boyd, S., El Ghaoui, L., Feron, E., Balakrishnan, V.: Linear Matrix Inequalities in System and
Control Theory. SIAM, Philadelphia, USA (1994)

7. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press (2004)
8. Clarkson, K.L., Mehlhorn, K., Seidel, R.: Four results on randomized incremental construc-

tion. Comput. Geom. 3(4), 185–212 (1993)
9. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification. Wiley-Interscience Publication

(2000)
10. Feist, A.M., Herrgard, M.J., Reed, J.L., Palsson, B.O.: Reconstruction of biochemical net-

works in microorganisms. Nat. Rev. Microbiol. 7(2), 129–143 (2009)
11. Gahinet, P., Apkarian, P., Chilali, M.: Affine parameter-dependent Lyapunov functions and

real parametric uncertainty. IEEE Trans. Autom. Control 41(3), 436–442 (1996)
12. Heinrich, R., Schuster, S.: The regulation of cellular systems. Chapman Hall, New York (1996)
13. Jaulin, L., Kieffer, M., Didrit, O., Walter, E.: Applied Interval Analysis. Springer, London,UK

(2001)
14. Kell, D.B.: Metabolomics and systems biology: making sense of the soup. Curr. Opin. Micro-

biol. 7(3), 296–307 (2004)
15. Kharitonov, V.L.: Asymptotic stability of an equilibrium position of a family of systems of

linear differential equations. Differential Equations 14, 1483–1485 (1979)
16. Koeppl, H., Hafner, M., Steuer, R.: Semi-quantitative stability analysis constrains saturation

levels in metabolic networks. In: Proc. Int. Workshop on Comput. Syst. Biol., pp. 91–94.
Aarhus, Denmark (2009)

17. Kruger, N.J., Ratcliffe, R.G.: Insights into plant metabolic networks from steady-state
metabolic flux analysis. Biochimie 91(6), 697–702 (2009)

18. Kuiper, B.J.: Qualitative Reasoning: Modeling and Simulation with Incomplete Knowledge.
MIT Press, Cambridge, MA, USA (1994)

19. Marsaglia, G.: Choosing a point from the surface of a sphere. Ann. Math. Stat. 43, 645–646
(1985)

20. Schaber, J., Liebermeister, W., Klipp, E.: Nested uncertainties in biochemical models. IET
Syst. Biol. 3(1), 1–9 (2009)

21. Steuer, R., Gross, T., Balsius, B.: Structural kinetic modeling of metabolic networks. Proc.
Nat. Acad. Sci. U.S.A. 103(32), 11,868–11,873 (2006)

22. Steuer, R., Junker, B.H.: Computational models of metabolism: Stability and regulation in
metabolic networks. Adv. Chem. Phys. 142 (2009)

23. Wang, L., Hatzimanikatis, V.: Metabolic engineering under uncertainty. I: framework devel-
opment. Metab. Eng. 8(2), 133–141 (2006)

24. Zamboni, N., Sauer, U.: Novel biological insights through metabolomics and 13c-flux analy-
sis. Curr. Opin. Microbiol. 12(5), 553–558 (2009)


