11 research outputs found

    Proximity effects and characteristic lengths in ferromagnet-superconductor structures

    Full text link
    We present an extensive theoretical investigation of the proximity effects that occur in Ferromagnet/Superconductor (F/SF/S) systems. We use a numerical method to solve self consistently the Bogoliubov-de Gennes equations in the continuum. We obtain the pair amplitude and the local density of states (DOS), and use these results to extract the relevant lengths characterizing the leakage of superconductivity into the magnet and to study spin splitting into the superconductor. These phenomena are investigated as a function of parameters such as temperature, magnet polarization, interfacial scattering, sample size and Fermi wavevector mismatch, all of which turn out to have important influence on the results. These comprehensive results should help characterize and analyze future data and are shown to be in agreement with existing experiments.Comment: 24 pages, including 26 figure

    Microscopic theory of weak pseudogap behavior in the underdoped cuprate superconductors I: General theory and quasiparticle properties

    Full text link
    We derive in detail a novel solution of the spin fermion model which is valid in the quasi-static limit pi T<<omega_sf, found in the intermediate (pseudoscaling) regime of the magnetic phase diagram of cuprate superconductors, and use it to obtain results for the temperature and doping dependence of the single particle spectral density, the electron-spin fluctuation vertex function, and the low frequency dynamical spin susceptibility. The resulting strong anisotropy of the spectral density and the vertex function lead to the qualitatively different behavior of_hot_ (around k=(pi,0)) and_cold_ (around k=(pi/2,pi/2)) quasiparticles seen in ARPES experiments. We find that the broad high energy features found in ARPES measurements of the spectral density of the underdoped cuprate superconductors are determined by strong antiferromagnetic (AF) correlations and incoherent precursor effects of an SDW state, with reduced renormalized effective coupling constant. The electron spin-fluctuation vertex function, i.e. the effective interaction of low energy quasiparticles and spin degrees of freedom, is found to be strongly anisotropic and enhanced for hot quasiparticles; the corresponding charge-fluctuation vertex is considerably diminished. We thus demonstrate that, once established, strong AF correlations act to reduce substantially the effective electron-phonon coupling constant in cuprate superconductors.Comment: REVTEX with EPS figures, uses multicol.sty, epsfig,sty, psfig.st

    Has the nonlinear Meissner effect been observed?

    Full text link
    We examine recent high-precision experimental data on the magnetic field, H{\bf H}, dependence of the penetration depth λ(H)\lambda(H) in YBa2Cu3O7−δ\rm{YBa_2Cu_3O_{7-\delta}} (YBCO) for several field directions in the a−ba-b plane. In a new theoretical analysis that incorporates the effects of orthorhombic symmetry, we show that the data at sufficiently high magnetic fields and low temperatures are in quantitative agreement with the theoretical predictions of the nonlinear Meissner effect.Comment: 4 text pages plus 3 postscript figure

    Impurity and strain effects on the magnetotransport of La1.85Sr0.15Cu(1-y)Zn(y)O4 films

    Full text link
    The influence of zinc doping and strain related effects on the normal state transport properties(the resistivity, the Hall angle and the orbital magneto- resistance(OMR) is studied in a series of La1.85Sr0.15Cu(1-y)Zn(y)O4 films with values of y between 0 and 0.12 and various degrees of strain induced by the mismatch between the films and the substrate. The zinc doping affects only the constant term in the temperature dependence of cotangent theta but the strain affects both the slope and the constant term, while their ratio remains constant.OMR is decreased by zinc doping but is unaffected by strain. The ratio delta rho/(rho*tan^2 theta) is T-independent but decreases with impurity doping. These results put strong constraints on theories of the normal state of high- temperature superconductors

    Magnetic field effects on the density of states of orthorhombic superconductors

    Full text link
    The quasiparticle density of states in a two-dimensional d-wave superconductor depends on the orientation of the in-plane external magnetic field H. This is because. in the region of the gap nodes, the Doppler shift due to the circulating supercurrents around a vortex depend on the direction of H. For a tetragonal system the induced pattern is four-fold symmetric and, at zero energy, the density of states exhibits minima along the node directions. But YBa_2C_3O_{6.95} is orthorhombic because of the chains and the pattern becomes two-fold symmetric with the position of the minima occuring when H is oriented along the Fermi velocity at a node on the Fermi surface. The effect of impurity scattering in the Born and unitary limit is discussed.Comment: 24 pages, 11 Figure

    Nature of the Electronic Excitations near the Brillouin Zone Boundary of Bi2_2Sr2_2CaCu2_2O8+δ_{8+\delta}

    Full text link
    Based on angle resolved photoemission spectra measured on different systems at different dopings, momenta and photon energies, we show that the anomalously large spectral linewidth in the (π,0)(\pi,0) region of optimal doped and underdoped Bi2_2Sr2_2CaCu2_2O8+δ_{8+\delta} has significant contributions from the bilayer splitting, and that the scattering rate in this region is considerably smaller than previously estimated. This new picture of the electronic excitation near (π,0)(\pi,0) puts additional experimental constraints on various microscopic theories and data analysis.Comment: 5 pages, 4 figure

    Nonlinear electrodynamics of p-wave superconductors

    Full text link
    We consider the Maxwell-London electrodynamics of three dimensional superconductors in p-wave pairing states with nodal points or lines in the energy gap. The current-velocity relation is then nonlinear in the applied field, cubic for point nodes and quadratic for lines. We obtain explicit angular and depth dependent expressions for measurable quantities such as the transverse magnetic moment, and associated torque. These dependences are different for point and line nodes and can be used to distinguish between different order parameters. We discuss the experimental feasibility of this method, and bring forth its advantages, as well as limitations that might be present.Comment: Fourteen pages RevTex plus four postscript figure

    Carrier relaxation, pseudogap, and superconducting gap in high-Tc cuprates: A Raman scattering study

    Full text link
    We describe results of electronic Raman-scattering experiments in differently doped single crystals of Y-123 and Bi-2212. The comparison of AF insulating and metallic samples suggests that at least the low-energy part of the spectra originates predominantly from excitations of free carriers. We therefore propose an analysis of the data in terms of a memory function approach. Dynamical scattering rates and mass-enhancement factors for the carriers are obtained. In B2g symmetry the Raman data compare well to the results obtained from ordinary and optical transport. For underdoped materials the dc scattering rates in B1g symmetry become temperature independent and considerably larger than in B2g symmetry. This increasing anisotropy is accompanied by a loss of spectral weight in B2g symmetry in the range between the superconducting transition at Tc and a characteristic temperature T* of order room temperature which compares well with the pseudogap temperature found in other experiments. The energy range affected by the pseudogap is doping and temperature independent. The integrated spectral loss is approximately 25% in underdoped samples and becomes much weaker towards higher carrier concentration. In underdoped samples, superconductivity related features in the spectra can be observed only in B2g symmetry. The peak frequencies scale with Tc. We do not find a direct relation between the pseudogap and the superconducting gap.Comment: RevTeX, 21 pages, 24 gif figures. For PostScript with embedded eps figures, see http://www.wmi.badw-muenchen.de/~opel/k2.htm

    Hall Effect and Resistivity in High-Tc Superconductors: The Conserving Approximation

    Full text link
    The Hall coefficient (R_H) of high-Tc cuprates in the normal state shows the striking non-Fermi liquid behavior: R_H follows a Curie-Weiss type temperature dependence, and |R_H|>>1/|ne| at low temperatures in the under-doped compounds. Moreover, R_H is positive for hole-doped compounds and is negative for electron-doped ones, although each of them has a similar hole-like Fermi surface. In this paper, we give the explanation of this long-standing problem from the standpoint of the nearly antiferromagnetic (AF) Fermi liquid. We consider seriously the vertex corrections for the current which are indispensable to satisfy the conservation laws, which are violated within the conventional Boltzmann transport approximation. The obtained total current J_k takes an enhanced value and is no more perpendicular to the Fermi surface due to the strong AF fluctuations. By virtue of this mechanism, the anomalous behavior of R_H in high-Tc cuprates is neutrally explained. We find that both the temperature and the (electron, or hole) doping dependences of R_H in high-T_c cuprates are reproduced well by numerical calculations based on the fluctuation-exchange (FLEX) approximation, applied to the single-band Hubbard model. We also discuss the temperature dependence of R_H in other nearly AF metals, e.g., V_2O_3, kappa-BEDT-TTF organic superconductors, and heavy fermion systems close to the AF phase boundary.Comment: 19 pages, to appear in Phys. Rev. B, No.59, Vol.22, 199

    Magnetotransport in the Normal State of La1.85Sr0.15Cu(1-y)Zn(y)O4 Films

    Full text link
    We have studied the magnetotransport properties in the normal state for a series of La1.85Sr0.15Cu(1-y)Zn(y)O4 films with values of y, between 0 and 0.12. A variable degree of compressive or tensile strain results from the lattice mismatch between the substrate and the film, and affects the transport properties differently from the influence of the zinc impurities. In particular, the orbital magnetoresistance (OMR) varies with y but is strain-independent. The relations for the resistivity and the Hall angle and the proportionality between the OMR and tan^2 theta are followed about 70 K. We have been able to separate the strain and impurity effects by rewriting the above relations, where each term is strain-independent and depends on y only. We also find that changes in the lattice constants give rise to closely the same fractional changes in other terms of the equation.The OMR is more strongly supressed by the addition of impurities than tan^2 theta. We conclude that the relaxation ratethat governs Hall effect is not the same as for the magnetoresistance. We also suggest a correspondence between the transport properties and the opening of the pseudogap at a temperature which changes when the La-sr ratio changes, but does not change with the addition of the zinc impurities
    corecore