5 research outputs found

    Phonon-drag effects on thermoelectric power

    Full text link
    We carry out a calculation of the phonon-drag contribution SgS_g to the thermoelectric power of bulk semiconductors and quantum well structures for the first time using the balance equation transport theory extended to the weakly nonuniform systems. Introducing wavevector and phonon-mode dependent relaxation times due to phonon-phonon interactions, the formula obtained can be used not only at low temperatures where the phonon mean free path is determined by boundary scattering, but also at high temperatures. In the linear transport limit, SgS_g is equivalent to the result obtained from the Boltzmann equation with a relaxation time approximation. The theory is applied to experiments and agreement is found between the theoretical predictions and experimental results. The role of hot-electron effects in SgS_g is discussed. The importance of the contribution of SgS_g to thermoelectric power in the hot-electron transport condition is emphasized.Comment: 8 pages, REVTEX 3.0, 7 figures avilable upon reques

    Ballistic conductance in kane type semiconductor quantum wire

    No full text
    The energy spectrum, ballistic conductance of an electron on the surface of a Kane type semiconductor hollow cylinder has been calculated by using the Kane equation with an additional term that takes into account the spin-orbit (SO) interaction. This term, known as Rashba term, occurs for asymmetric quantum wells, where two directions on the normal n are physically nonequivalent. If Rashba spin-orbital interaction is incorporated into energy spectrum, it leads to the emergence of new extrema. We obtained electron energy spectrum, which depends on the sign of the effective spin orbital constant. The energy spectrum of electrons has two branches when the magnetic field does not exist. One of these branches has only one minimum while the other branch has one maximum around k = 0 and two minima. The external magnetic field can control these extrema which occur in the event transport. The results were used to obtain the ballistic conductance at finite temperature of the Kane type hollow cylinder. It has been found that the presence of additional local extremum points in the subband of the electronic spectrum leads to a nonmonotonic dependence of the ballistic conductance of the system on the chemical potential. The g-factor of electrons was observed to depend on Rashba parameter in a linear manner. The effect of finite temperature smears out the sharp steps in the zero-temperature conductance
    corecore