58 research outputs found

    CFD Simulation to Optimise Single Stage Pulse Tube Refrigerator Temperature Below 6oK

    Get PDF
    AbstractAn optimize result of the single stage iterance tube pulse tube refrigerator (ITPTR) has been found by the use of a computational fluid dynamic (CFD) solution method. A well CFD solution software FLUENT is used for solution purpose. A number of case has been solved by changing the pulse tube length by taking diameter constant out of which it is found that a length of about 125mm at which the minimum temperature is achieved at cold heat exchanger end of 58K. The variation in any parameter of ITPTR will affect the cooling temperature that may be the length or diameter of pulse tube or inertance tube or change in operating frequency but it is essential to achieve lower temperature than till date achieved by same method. So for optimization purpose we take the length of pulse tube length as the varying Para-meter and the operating frequency 34Hz, pulse tube diameter 5mm remains constant. To get an optimum parameter experimentally is a very tedious for iterance tube pulse tube refrigerator job so the CFD approach gives a better solution which is the main purpose of the present work

    Dynamic model of basic oxygen steelmaking process based on multi-zone reaction kinetics : modelling of manganese removal

    Get PDF
    In the earlier work, a dynamic model for the BOF process based on the multi-zone reaction kinetics has been developed. In the preceding part, the mechanism of manganese transfer in three reactive zones of the converter has been analyzed. This study identifies that temperature at the slag-metal reaction interface plays a major role in the Mn reaction kinetics and thus a mathematical treatment to evaluate temperature at each reaction interface has been successfully employed in the rate calculation. The Mn removal rate obtained from different zones of the converter predicts that the first stage of the blow is dominated by the oxidation of Mn at the jet impact zone, albeit some additional Mn refining has been observed as a result of the oxidation of metal droplets in emulsion phase. The mathematical model predicts that the reversion of Mn from slag to metal primarily takes place at the metal droplet in the emulsion due to an excessive increase in slag-metal interface temperature during the middle stage of blowing. In the final stage of the blow, the competition between simultaneous reactions in jet impact and emulsion zone controls the direction of mass flow of manganese. Further, the model prediction shows that the Mn refining in the emulsion is a strong function of droplet diameter and the residence time. Smaller sized droplets approach equilibrium quickly and thus contribute to a significant Mn conversion between slag and metal compared to the larger sized ones. The overall model prediction for Mn in the hot metal has been found to be in good agreement with two sets of different size top blowing converter data reported in the literature

    Dynamic model of basic oxygen steelmaking process based on multi-zone reaction kinetics : model derivation and validation

    Get PDF
    A multi-zone kinetic model coupled with a dynamic slag generation model was developed for the simulation of hot metal and slag composition during the BOF operation. The three reaction zones, (i) jet impact zone (ii) slag-bulk metal zone (iii) slag-metal-gas emulsion zone were considered for the calculation of overall refining kinetics. In the rate equations, the transient rate parameters were mathematically described as a function of process variables. A micro and macroscopic rate calculation methodology (micro-kinetics and macro-kinetics) were developed to estimate the total refining contributed by the recirculating metal droplets through the slag-metal emulsion zone. The micro-kinetics involves developing the rate equation for individual droplets in the emulsion. The mathematical models for the size distribution of initial droplets, kinetics of simultaneous refining of elements, the residence time in the emulsion, dynamic interfacial area change were established in the micro-kinetic model. In the macro-kinetics calculation, a droplet generation model was employed and the total amount of refining by emulsion was calculated by summing the refining from the entire population of returning droplets. A dynamic FetO generation model based on oxygen mass balance was developed and coupled with the multi-zone kinetic model. The effect of post combustion on the evolution of slag and metal composition was investigated. The model was applied to a 200-ton top blowing converter and the simulated value of metal and slag was found to be in good agreement with the measured data. The post-combustion ratio was found to be an important factor in controlling FetO content in the slag and the kinetics of Mn and P in a BOF process

    Not Available

    No full text
    Not AvailableEdwardsiella tarda belongs to the genera of Gram negative bacterium mainly associated with edwardsiellosis, the most commonly found infectious fish disease throughout the globe. E. tarda is also a widespread pathogen which cause infections such as cellulitis or gas gangrene and generalized infections in humans. To control the escalating infection of E. trada on various species, it is essential to decoded the mysterious mechanism behind the bacterial infection at transcript level. In this present study, we carry out a de novo E. tarda Whole transcriptome sequencing, isolated from infected fish intestine using SOLiD sequencing platform. RNA-Seq data analysis was performed using various bioinformatics pipelines. Protein-protein interaction study for pathway enrichment and gene ontology study were executed for further investigation. Assembly statistics for E. tarda dataset showed that the number of transcript contigs was 9657 out of which 6749 were GO annotated whereas 1528 were not assigned any GO terms. GO analysis showed that the expressed genes were enhanced with molecular function, cellular component and biological process. A KEGG enrichment study showed that pathway's that are directly linked with immune diseases like Rheumatoid arthritis (0.2%), Tuberculosis (0.3%) Endocytosis (0.6%) was considerably enriched. Protein-protein interaction study showed that most of the expressed proteins were involved in metabolic pathways, flagellar assembly, Propanoate metabolism, Microbial metabolism in diverse environments, Butanoate metabolism and Carbon. The present study provides novel E. tarda transcriptome sequence data, allowing us to identify biologically significant genes and their functional relationship with fish diseases, and will be useful in recognize the reliable therapeutic targets in near feature.Not Availabl

    Recovery of Al and Na Values from Red Mud by BaO-Na2CO3 Sinter Process

    No full text
    The red mud BaO-Na2CO3 sinter process can be used in combination with the Bayer process to recover sodium and aluminium from the red mud waste and direct it back to the process stream. This is facilitated by the high temperature reaction of BaO-Na2CO3 and De-silication product (Sodalite) (DSP) in the red mud to produce an insoluble di-barium silicate, barium titanate, barium ferrite and a soluble sodium aluminate. A variation of the red mud BaO-Na2CO3 sintering process using half the barium oxide of existing methods has been investigated. The barium to silicon ratio was reduced from 2 to 1 producing a sodium barium silicate (Na2BaSiO4) rather than the di-barium silicate (Ba2SiO4) insoluble phase produced in the existing BaO-Na2CO3 sinter method. Synthetic BaO-Na2CO3 sinter products were investigated to understand the phases produced during sintering at varying temperatures and the chemistry of extraction. The target phases and morphological behaviors of sinter products were seen in XRD and SEM and the highest extractions were produced from a sinter temperature of 1000 °C for 4 h. A two-stage (105 °C / 60 min, 105 °C / 240 min) water or caustic leaching process was found to be most effective for extraction. Sodium and aluminium extractions were 99% and 99.5% respectively. The experimental method devised was then used to treat red mud and the target phases were produced. An extraction of sodium and aluminium of 94% and 87% respectively was achieved. Silicon extractions were below 2%. Production benefits include sodium hydroxide savings, liquor burning, increased aluminium extraction and reduced cost of waste handling

    Fluoride adsorption studies on mixed-phase nano iron oxides prepared by surfactant mediation-precipitation technique

    Get PDF
    Mixed nano iron oxides powder containing goethite (α-FeOOH), hematite (α-Fe2O3) and ferrihydrite (Fe5HO8·4H2O) was synthesized through surfactant mediation-precipitation route using cetyltrimethyl ammonium bromide (CTAB). The X-ray diffraction, FTIR, TEM, Mössbauer spectroscopy were employed to characterize the sample. These studies confirmed the nano powder contained 77% goethite, 9% hematite and 14% ferrihydrite. Fluoride adsorption onto the synthesized sample was investigated using batch adsorption method. The experimental parameters chosen for adsorption studies were: pH (3.0-10.0), temperature (35-55°C), concentrations of adsorbent (0.5-3.0g/L), adsorbate (10-100mg/L) and some anions. Adsorption of fluoride onto mixed iron oxide was initially very fast followed by a slow adsorption phase. By varying the initial pH in the range of 3.0-10.0, maximum adsorption was observed at a pH of 5.75. Presence of either SO42- or Cl- adversely affected the adsorption of fluoride in the order of SO42->Cl-. The FTIR studies of fluoride loaded adsorbent showed that partly the adsorption on the surface took place at surface hydroxyl sites. Mössbauer studies indicated that the overall absorption had gone down after fluoride adsorption that implies it has reduced the crystalline bond strength. The relative absorption area of ferrihydrite was marginally increased from 14 to 17%

    Influence of Porosity on the Performance of a Pulse Tube Refrigerator: A CFD Study

    Get PDF
    AbstractThis research article illustrates a numerical study of single stage coaxial as well as inline Inertance-Type Pulse Tube Refrigerator (ITPTR), which performance is mostly depending upon a regenerator. Regenerator is the significant component of a pulse tube refrigerator which has a great importance of producing cooling effect. In this present work a computational fluid dynamic (CFD) solution approach has been chosen for numerical purpose. The detail analysis of cool down behaviour, heat transfer at the cold end and pressure variation inside the whole system has been carried out by using the computational fluid dynamic software package FLUENT. A number of cases have been solved by changing the porosity of the regenerator from 0.5 to 0.9 and rest of parameter are remains unchanged. The operating frequency for all case is 34Hz, pulse tube diameter 5mm and length is 125mm not changed for all cases. The result shows that porosity value of 0.6 produce a better cooling effect on the cold end of pulse tube refrigerator. The variation of pressure inside the pulse tube refrigerator during the process also analysed. To get an optimum parameter experimentally is a very tedious for iterance tube pulse tube refrigerator job so the CFD approach gives a better solution which is the main purpose of the present work
    corecore