17 research outputs found

    FORTE satellite constraints on ultra-high energy cosmic particle fluxes

    Full text link
    The FORTE (Fast On-orbit Recording of Transient Events) satellite records bursts of electromagnetic waves arising from near the Earth's surface in the radio frequency (RF) range of 30 to 300 MHz with a dual polarization antenna. We investigate the possible RF signature of ultra-high energy cosmic-ray particles in the form of coherent Cherenkov radiation from cascades in ice. We calculate the sensitivity of the FORTE satellite to ultra-high energy (UHE) neutrino fluxes at different energies beyond the Greisen-Zatsepin-Kuzmin (GZK) cutoff. Some constraints on supersymmetry model parameters are also estimated due to the limits that FORTE sets on the UHE neutralino flux. The FORTE database consists of over 4 million recorded events to date, including in principle some events associated with UHE neutrinos. We search for candidate FORTE events in the period from September 1997 to December 1999. The candidate production mechanism is via coherent VHF radiation from a UHE neutrino shower in the Greenland ice sheet. We demonstrate a high efficiency for selection against lightning and anthropogenic backgrounds. A single candidate out of several thousand raw triggers survives all cuts, and we set limits on the corresponding particle fluxes assuming this event represents our background level.Comment: added a table, updated references and Figure 8, this version is submitted to Phys. Rev.

    Genome-wide association meta-analyses and fine-mapping elucidate pathways influencing albuminuria

    Get PDF
    Increased levels of the urinary albumin-to-creatinine ratio (UACR) are associated with higher risk of kidney disease progression and cardiovascular events, but underlying mechanisms are incompletely understood. Here, we conduct trans-ethnic (n = 564,257) and European-ancestry specific meta-analyses of genome-wide association studies of UACR, including ancestry- and diabetes-specific analyses, and identify 68 UACR-associated loci. Genetic correlation analyses and risk score associations in an independent electronic medical records database (n = 192,868) reveal connections with proteinuria, hyperlipidemia, gout, and hypertension. Fine-mapping and trans-Omics analyses with gene expression in 47 tissues and plasma protein levels implicate genes potentially operating through differential expression in kidney (including TGFB1, MUC1, PRKCI, and OAF), and allow coupling of UACR associations to altered plasma OAF concentrations. Knockdown of OAF and PRKCI orthologs in Drosophila nephrocytes reduces albumin endocytosis. Silencing fly PRKCI further impairs slit diaphragm formation. These results generate a priority list of genes and pathways for translational research to reduce albuminuria

    Practical aspects of acoustic plastic pipe location

    No full text
    Many gas distribution company operation and maintenance activities require precise knowledge of the location of buried plastic piping. Plastic pipe cannot be located if the tracer wire is gone or was never installed. Under sponsorship of the Southern California Gas Company, IGT successfully demonstrated an acoustic plastic pipe location technique and is developing the technique into a practical field instrument an acoustic signal is injected directly into the gas at a service. The acoustic signal travels in the gas in the pipes, not in the pipe wall. As the acoustic wave travels along the pipe, some of the sound radiates from the pipe through the soil to the surface of the ground. An array of sensors on the surface of the ground perpendicular to the pipe detects the acoustic signal, thereby locating the Pipe. Two different acoustic measurements are used. The first measurement locates the pipe to within {plus_minus} 3-ft. Then the second technique determines the location of the pipe to within {plus_minus} 6-in. Document type: Repor

    Water absorption properties of kenaf fibre-poly(vinyl alcohol) composites

    No full text
    The composite was prepared by mixing aqueous solution of different ratios of poly(vinyl alcohol) into dried kenaf fibres. The water absorbency of this polymer composite was investigated. It was found that the polymer composite starts to swell when immersed into water and reaches the highest water absorption percentage in the first 1 hour. The highest water absorption percentage was 273 and 251% for the composite with 2 and 10 wt% of poly(vinyl alcohol), respectively, in 24 hours. The high water absorbency could be due to the interaction of water with the hydroxyl group in the poly(vinyl alcohol) and fibres, similar to other reported works on cellulose composites. Interestingly, the poly(vinyl alcohol) in the composite only starts to dissolve very slowly over more than 7 days before the kenaf fibres started to dropout from the composite. This water absorption capability of the polymer composite could have potential applications that require high water-retaining properties. Besides, this composite is non-toxic
    corecore